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2. Background on the Genus Phaseolus 
 
2.1. Economic, nutritional, and cultural roles: T. Parker, J.R. Myers, P. Gepts 

The genus Phaseolus includes five domesticated species, two of which were 
domesticated twice, making the genus a hotspot of crop domestication. The domesticated 
species include – in order of decreasing economic importance: common bean (P. vulgaris 
L.), Lima bean (P. lunatus L.), runner bean (P. coccineus L.), tepary bean (P. acutifolius 
A. Gray), and year bean (P. dumosus Macfad.) (Freytag and Debouck 2002; Delgado-
Salinas et al. 2006). Because of its economic importance, common bean is often used as 
representing all five Phaseolus domesticates. For example, production data that will be 
presented later in this section, reflect the production of common bean – whether dry or 
green beans – but, depending on the country or state, may also include production of the 
other species of Phaseolus or even other grain legumes (e.g., Vigna spp.) in aggregated 
fashion (although in most cases the production of common bean always predominates). 
Another example is the snap and string bean economic categories, which include 

Phaseolus grown for pods, as well as yard-
long bean (Vigna unguiculata var 
sesquipedalis). 

Among grain legumes, Phaseolus 
beans play an important role as demonstrated 
by worldwide production and human 
utilization data of the Food and Agricultural 
Organization of the United Nations (FAO 

2018: 
http://www.fao.org/faostat/en/#search/beans. 

Table 1). While soybean (Glycine max) and, 
to a lesser extent, groundnut (Arachis 
hypogea), are grown mainly for extraction of 
oils, Phaseolus beans are grown for direct 
human consumption after cooking, generally 
for its grains, harvested at physiological 
maturity (i.e., maximum fresh weight: shell 

beans; stage R8, Fernández et al. 1982) or, most frequently, as dry maturity [dry beans; 
stage R9). Alternatively, they are grown as a vegetable (snap beans), harvested at the 
end of the pod growth phase (stage R7). The geographic distribution of Phaseolus bean 
production and the per capita consumption, whether for dry beans (Table 2), green (shell-
out) beans (Table 3), or snap beans (Table 4), illustrates very well how this crop has 
achieved a global status, having been disseminated from its multiple domestication 
centers in the Americas (Figure 1). Dry bean production from 2008-2018 averaged 
approximately 4kg per person per year, and this production has been concentrated in 

Table 1. Worldwide production of grain 
legumes (FAO data) (accessed August 
18, 2020) 

Item 
Total production 

(metric tons) 
Soybeans 348,712,311 
Groundnuts 45,950,901 
Beans, dry 30,434,280 
Chickpeas 17,192,188 
Peas, dry 13,534,166 
Cowpeas, dry 7,233,408 
Lentils 6,333,352 
Pigeon peas 5,960,575 
Faba beans 4,923,090 
Lupins 1,188,213 
Bambara beans 195,151 
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South Asia, East Africa, and the Americas (Figure 1A). On a per capita basis, production 
is highest in Myanmar, with most of the production exported to India (FAOSTAT 2020, 
Figure 1). Per capita production for local consumption is high in Latin America and East 
Africa. Consumption of dry bean is highest in East Africa, where it is primarily grown by 
subsistence farmers. In Rwanda, for example, average consumption is approximately 36-

Table 2. Twenty largest dry-bean-
producing countries (FAO data) (accessed 
August 18, 2020) 

Country 

Total 
production 

(metric 
tons)1 

India 6,220,000 
Myanmar 4,779,927 
Brazil 2,915,030 
United States of America 1,700,510 
China, mainland 1,324,407 
United Republic of 
Tanzania 1,210,359 
Mexico 1,196,156 
Uganda 1,039,109 
Kenya 765,977 
Ethiopia 607,929 
Argentina 473389 
Rwanda 454,174 
Kazakhstan 409,800 
Cameroon 402,054 
Burundi 393,233 
Canada 341,100 
Democratic People's 
Republic of Korea 323,204 
Angola 314,932 
Guatemala 253,037 
Total across all countries 30,447,423 

1Production amounts from FAO data 
combine common bean with other grain 
legumes, leading to inflated figures for SE 
Asia and China (Myers & Kmiecik, 2017). It 
is estimated that Vigna spp. account for 93% 
of dry bean production in India and 56% in 
China (Akibode and Maredia, 2011). 
Proportions for other SE Asian countries are 
unknown. 

Table 3. Twenty largest green (shell-out)- 
bean-producing countries FAO data) 
(accessed August 18, 2020)1 

Country 

Total 
production 

(metric 
tons) 

China, mainland 19,897,100 
Indonesia 939,598 
India 715,141 
Turkey 580,949 
Thailand 315,293 
Egypt 284,299 
Italy 163,824 
Morocco 148,392 
Spain 138,925 
Bangladesh 134,860 
Belgium 98,248 
Algeria 93,184 
Mexico 91,853 
Sri Lanka 83,966 
Iran (Islamic Republic of) 65,591 
Greece 57,860 
Romania 53,591 
Canada 53,456 
Australia 45,903 
Chile 41,493 
Total across all countries 24,752,673 

1See footnote for Table 2. Production figures 
for SE Asia and China are inflated because 
other species are recorded as “green beans” 
in these countries. 
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38 kg per person each year (FAOSTAT 2008-
2018, Kalyebara and Buruchara 2008). FAO 
data are believed to underestimate 
production and consumption in these areas, 
as direct on-farm consumption is more likely 
to go unreported than trade and sales 
(Debouck 2016). Beans provide 65% of the 
protein consumed in Rwanda, compared to 
4% provided by animal sources (Larochelle 
and Alwang 2014). This highlights the 
extreme importance of Phaseolus beans to 
food security, particularly in developing 
countries.  

Production of string or snap bean 
(Table 4) is dominated by the US. While 
Phaseolus and Vigna species may be 
combined in FAO statistical data, particularly 
for Asia, the vast majority of Chinese 
production is common bean rather than yard-
long bean (Wu et al. 2020). On a per capita 
basis, production is more evenly distributed 
globally, with production centers in the 
Mediterranean and the Americas. Production 
of snap bean tends to be shifted towards 
more temperate and higher-income countries 
relative to dry bean. 

As a grain legume, Phaseolus beans 
fulfill several important roles from agronomic, 
human nutritional, socio-economic, and 
cultural standpoints. Agronomically, they fix 
atmospheric nitrogen in a form accessible to 
plants through a symbiotic relationship with 
soil bacteria like Bradyrhizobium, Rhizobium, 
and related genera (Hohenberg et al. 1982; 
Hernandez-Lucas et al. 1995; Crews et al. 2004;  Ribeiro et al. 2013;  Ormeño-Orrillo et 
al. 2006, 2015; Servín-Garcidueñas et al. 2014; de Araujo et al. 2017; Ramírez-Puebla 
et al. 2019; Shamseldin & Velázquez 2020). Beans also complement other crops, either 
dicots (e.g., Solanaceae, Brassicaceae, or Cucurbitaceae) or monocots (e.g., Poaceae), 
in associated cropping agroecosystems, like the milpa system originating in Mesoamerica 
and now distributed in Latin America and Africa. In the milpa system, the main crops – 
bean, maize, and squash (Heindorf et al. 2019) – have complementary functions, 
including root systems, leading to up to higher yields compared to the yields of component 

Table 4. Twenty largest string (snap) 
bean-producing countries FAO data) 
(accessed September 23, 2020)1 

Country 

Total 
production 

(metric tons) 

United States of America 798,110 
France 339,400 
Morocco 156,017 
Mexico 128,030 
Philippines 114,380 
Turkey 88,024 
Poland 51,776 
Argentina 49,105 
Japan 37,538 
Malawi 27,971 
Iraq 26,239 
Peru 25,670 
China, mainland 10,789 
Taiwan 10,789 
Venezuela 8,226 
Jamaica 6,756 
Côte d'Ivoire 4,759 
Egypt 319 
Barbados 291 
French Polynesia 171 
Total across all countries 1,884,465 

1A significant proportion of the string beans 
produced and consumed in China and India 
as well as other SE Asian countries are 
Asparagus or Yard-long (Vigna unguiculata) 
beans. FAO combines Vigna and Phaseolus 
species in their estimates. Exact proportions 
are unknown. 
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crops (Zhang et al. 2014).  Beans also play an important role in crop rotations. For 
example, in California, lima bean enters in rotation with crops such as cotton, maize, 
safflower, wheat, rice, alfalfa, tomatoes, sunflower, and cucurbits, and, more recently, 
young orchards (Long et al. 2010, 2014).  

Phaseolus beans are also an important human nutritional asset (Hayat et al. 2014; 
Myers and Kmiecik 2017). They provide a diet high in protein (22-25% seed nitrogen) 
(Delaney et al. 1991a,b), mineral elements like iron and zinc (Castro Guerrero et al. 2016), 
dietary fibers (Brick and Thompson 2016; Moghaddam et al. 2018), antioxidants such as 
polyphenolics (Yang et al. 2018), and certain vitamins (e.g., folate). Although beans are 
low in sulfur amino acids like methionine and cysteine (Gepts and Bliss 1984), they are 
rich in lysine; thus, when combined with cereals like maize in a 3 maize:1 beans ratio 
(Bressani 1993), they provide a complementary source of essential amino acids that 
enhances its protein quality. As a grain legume, Phaseolus beans also mitigate chronic 
diseases, like heart disease, obesity, and diabetes (Thompson et al. 2017; Thompson 
2019). Notably, they reduce the post-prandial glycemic index in adults, decreasing the 
risk of type-2 diabetes and cardiovascular disease (Thompson et al. 2012). Tantalizing 
evidence also suggests that Phaseolus beans may reduce breast cancer (Thompson et 
al. 2009). String beans (or snap beans, when the variety is devoid of pod fibers) contain 
approximately 2% protein and 7% carbohydrates, and are rich sources of vitamin C, 
carotenoids, and vitamin K (Myers and Kmiecik 2017). 

 Nevertheless, despite the many positive nutritional attributes, beans also harbor 
some antinutritional traits (Bressani 1993), some of which can be eliminated by heat 
treatment, like seed phytohaemagglutinins or lectins. Other negative traits include 
phytates, which limit the bioavailability of iron, zinc, and calcium (Campion et al. 2009; 
Blair et al. 2012b). It is also good to remember that there is genetic variation for these 
nutritional or anti-nutritional factors (Ramirez-Cardenas et al. 2008). 

 Culturally, Phaseolus beans have come to occupy a central position in the human 
diet of many regions of the world, principally in Latin America and Eastern and Southern 
Africa (see above). Archaeological, ethnobotanical, and biological data confirm the dietary 
role of beans in ancient Mesoamerica (Zizumbo-Villarreal and Colunga GarcíaMarín 
2010; Zizumbo Villarreal et al. 2012, 2014). Although no comparable analysis exists for 
the Andean domestications of common and lima beans yet, the analyses of Zizumbo-
Villarreal et al. illustrates active utilization and concurring selection that took place for 
cooking and dietary characteristics resulting in a very diversified diet that supported the 
development of Mesoamerican civilizations.  

Further selections for adaptation, cooking, and dietary traits have no doubt taken 
place when Phaseolus beans were dispersed to other regions in the Americas before 
1492 and other continents post-1492. Dispersal to regions of higher latitudes required 
selection for decreased sensitivity to photoperiod, including the sensing of night length 
and temperature. Beans became integrated into the cooking traditions of countries around 
the world (and sometimes acquired an important role as a national dish), like ‘Gallo Pinto’ 
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of Central America, ‘Feijoada’ in Brazil and other former Portuguese colonies, ‘Cassoulet’ 
of France, ‘Fagioli all'uccelletto’ of Italy, ‘Lobio’ of Georgia, and ‘Jajangmyeon’ in Korea, 
not mention Boston baked beans. This implies human selections for seed types (color, 
size, shape, grain texture, and broth density), accounting for the extraordinary diversity 
of seed types that sets apart from many other crops. In turn, these adaptations have 
shaped the diversity in the Phaseolus genome. 

  The genus Phaseolus encompasses no less than seven domestications in five 
species that differ in their life histories, reproductive systems, adaptations, and degrees 
of domestication. This feature raises scientific issues such as the extent of convergent 
evolution among domesticated species, the type of genes affected by domestication, 
whether structural genes or transcription factors, their location in the genome and the 
extent of linkage disequilibrium surrounding them, the evolution of genetic diversity, the 
role of gene flow, and any parallelism in genetic diversity in associated organisms like 
pathogens (Gepts 2014a,b; Hufford et al. 2019). Information from these studies can be 
applied to the conservation of genetic resources and their use in breeding (Kelly et al. 
1998, Miklas et al. 2006; Gepts 2006; Acosta-Gallegos et al. 2007; Kelly 2018). Climate 
change will have a major impact on production of Phaseolus beans, greatly changing 
biotic and abiotic stresses that plants experience. The increasing wealth of genetic 
knowledge about the genus will be critical for developing varieties that suit the needs of 
these changing circumstances. The wealth of inter-specific diversity in Phaseolus has 
only recently begun to be explored. The transfer of useful alleles between species will be 
a major step in ensuring the continued productivity of this important genus as is the use 
of all the domesticated species in their own right as individual staple crops.  

2.2. Origin and Diversification of Phaseolus sp.: T. Parker, P. Gepts  

Phaseolus sp. is a member of the Fabaceae (Leguminosae) family and the subfamily 
Papilionoideae. Within the latter, Phaseolus spp. belongs to the warm-season 
phaseoloid/millettioid clade, which includes the Phaseoleae tribe (Gepts et al. 2005). The 
Phaseoleae tribe, and the genus Phaseolus in particular, constitute a domestication 
hotspot. This tribe also includes the closely related Vigna genus [e.g., cowpea Vigna 
unguiculata (L.) Walp.] from Africa; mung bean Vigna radiata Wilczek from Asia), soybean 
[Glycine max (L.) Merr.], hyacinth bean [Lablab purpureus (L.) Sweet], and pigeon pea 
[Cajanus cajan (L.) Hutt].  

The genus Phaseolus, in its current definition (Maréchal et al. 1978), originated 
some 5-6 million years ago (Delgado Salinas et al. 2006) and consists of some 70-85 
species distributed exclusively in the Americas, with a particular focus on Mexico (Cerda-
Hurtado et al. 2018), although several species of the genus are distributed outside Mexico 
in areas ranging from the northeastern U.S. and Canada [e.g., P. polystachios (L.) Britt., 
Sterns & Pogg.] to northwest Argentina (e.g., wild P. lunatus and P. vulgaris) and on some 
of the islands close to the American continent (e.g., P. mollis Hook. in the Galapagos, P. 
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lignosus Britton in the Bermudas) (Freytag and Debouck 2002; Delgado Salinas et al. 
2006; Ramírez-Villegas et al. 2010; Debouck 2015; Dohle et al. 2019). Within this range, 
they inhabit ecozones from sea level to mountain highlands. Many species show 
specialization to particular habitats and temperature ranges, with unique species, for 
example, in arid regions, lowland tropics, and tropical highlands. Phaseolus species are 
highly variable in mode of pollination, with some species highly autogamous and others 
strictly allogamous. They also differ in perenniality, spanning from perennial to strongly 
annual (Bitocchi et al. 2017). 

 
They can be divided into a hierarchy of gene pools based on the extent to which 

groups can be hybridized (Harlan and de Wet 1971). For common bean, other members 
of P. vulgaris, including wild types, are in the primary gene pool. The secondary gene 
pool includes P. dumosus, P. coccineus, and several wild species, such as P. 
costaricensis Freytag and Debouck (e.g., Mendel 1865, Butare et al. 2012); the tertiary 
gene pool includes P. acutifolius (e.g., Thomas and Waines 1984, Waines et al. 1988), 
and more distantly related species such as P. lunatus are in the quaternary gene pool 
(Fig. 1). This means that alleles from three of the five domesticated species can be 
exchanged fairly readily (Smartt 1970, Singh 2001, Singh et al. 2001, Mina-Vargas et al. 
2016, Rendón-Anaya et al. 2017a). The gene pools relative to other Phaseolus 
domesticates have also been resolved (Dohle et al. 2019). 

 
Delgado-Salinas et al. (2006) used the chloroplast loci matK and adjacent trnK 

intron sequences, combined with ribosomal internal transcribed sequences (ITS) in the 
nuclear genome, to develop a molecular phylogeny of the genus. They identified two 
major groups, known as the A and B clades in the genus, which diverged some 5-6 million 
years ago. They contain similar numbers of species but vary strongly in their breadth of 
their distribution. The A clade is found almost exclusively in Mexico, with a small number 

 
Figure 1. Crossability relationships among domesticated Phaseolus species and 
closely related species. For more explanations, see text. 
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of species extending into the Southwestern United States and Central American countries 
south to Panama. They are not found in oceanic islands and are confined to a relatively 
narrow highland elevational range. In contrast, the clade B species are native to every 
country from Canada to Argentina (except the Guianas, Brasil, Uruguay, Paraguay, and 
Chile), inhabit much wider elevational ranges, including numerous species found at low 
elevations and on oceanic islands. They also show much greater tolerance to 
environmental variability and stresses, such as frost and disturbed soils (Delgado-Salinas 
et al. 2006). This broad adaptability may have served as a pre-adaptation to the complex 
and variable conditions of the cultivated environment during and after domestications. 
Phaseolus spp. includes no less than five species that have been domesticated (see 
above). Domestication occurred in only two species groups of the genus, the Lunatus 
group (with two domestications) and the Vulgaris group (five domestications), both groups 
belonging to clade B; no domestication took place in clade A species. Two of these 
species were domesticated twice in geographically distinct regions of the Americas. 
These two species have the most extensive distribution in the genus: P. lunatus and P. 
vulgaris (Fig. 2). The five domesticated species show contrasting characteristics (Table 
5). 

 
Lima bean (P. lunatus) is the earliest diverging domesticated Phaseolus species. 

It is native to both North and South America and oceanic islands adjacent to the American 
continent, where it inhabits a wide range of elevations (0-1600m). In Mexico, it is the 
species with the broadest adaptation, being distributed in all 14 major vegetation types 
recognized by Rzedowski (1990), in contrast with runner bean (10), common bean (9), 
tepary bean (8), and year bean (1) (Delgado Salinas and Gama López 2015). In addition 
to Mexico, wild populations of lima bean are also distributed in Central America 
(Guatemala, Belize, Honduras, El Salvador, Costa Rica, and Panama) and the Andes of 
South America (Colombia, Ecuador, Peru, and Argentina). These wild populations are 
structured into three gene pools, two Mesoamerican (MI and MII) and one Andean (AI; 
Serrano-Serrano et al. 2010). The MI gene pool is distributed in west-central Mexico and 
the MII gene pool in southern Mexico, Central America, and South America. Two of these 
gene pools were domesticated (Gutiérrez Salgado et al. 1995, Motta-Aldana et al. 2010, 
Andueza-Noh et al. 2015, Chacón-Sánchez and Martínez-Castillo 2017 ): MI gave rise to 
Mesoamerican domesticates, either cv.-group ‘Potato’ (small, rounded seeds) or cv.-
group ‘Sieva’ (medium-sized, flat seeds) and AI led to Andean domesticates, with large 
seeds (Mackie 1943, Baudet 1977; Lioi 1994). 

 
Wild tepary bean (P. acutifolius) is found mainly in northwestern Mexico, as well 

as the states of Texas, New Mexico, and Arizona in the southwestern United States (Fig. 
2). Several groups are close relatives of tepary beans, with disagreements on the 
relatedness between these based on sampling. The species has been traditionally divided 
into three subgroups, P. acutifolius var. acutifolius, P. acutifolius var. latifolius, and P. 
acutifolius var. tenuifolius; a P. parvifolius group is sometimes included within P. 
acutifolius or as a closely related species (Blair et al. 2012a). Several studies have 
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indicated that P. acutifolius var. latifolius is a misnomer and should be classified with P. 
acutifolius var. acutifolius (Pratt and Nabhan 1988, Blair et al. 2012a, Gujaria-Verma et 
al. 2016). Microsatellite data generated by Blair et al. (2012) supported a model of a 
genetic continuum between the core acutifolius types and the P. parvifolius types, which 
they classified as a separate species due to extremely limited gene flow with other groups. 
Intermediate between these are the tenuifolius types, which had previously been 
considered genetically indistinguishable from the core acutifolius group (Muñoz et al. 
2006). The SNP-based analysis of Gujaria-Verma et al. (2016) came to essentially the 

Table 5. Diversity among Domesticated Species in the Genus Phaseolus 

Species 

No. of 
domest-
ications 

Presumed 
domestication 

locations 
Reproductive 

systems 
Life 

history Adaptation 
Common bean 
(P. vulgaris) 

2 Central Mexico 
vs. Southern 
Andes 

Predominantly 
autogamous 

Annual 
(medium) 

Mesic 

Lima bean 
(P. lunatus) 

2 Mexico vs. 
Ecuador & N. 
Peru 

Mixed auto- and 
allogamous 

Annual 
(long) 

Hot, dry to 
humid 

Runner bean  
(P. coccineus) 

1 Mexico Predominantly 
allogamous 

Perennial Cool and moist 

Tepary bean  
(P. acutifolius) 

1 N.W. Mexico 
(Jalisco, Sinaloa, 
Chihuahua) 

Auto- to 
cleistogamous 

Annual 
(short) 

Hot and dry 

Year bean  
(P. dumosus) 

1 Guatemalan 
Highlands 

Leaning to 
allogamous 

Pluri-
annual 

Intermediate 
between 
runner and 
common bean 

      

 
Figure 2. Distribution of the wild ancestral relatives of the five domesticated species in the 
genus Phaseolus. 
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same conclusions as Blair et al. (2012a), with parvifolius forming a distinct group and 
latifolius comprising several groups of intermediates. Tepary beans are adapted to by far 
the hottest and driest conditions of the domesticated Phaseolus species and are 
exceptionally well suited to these conditions. The environmental conditions in its center 
of origin are not conducive for many bacterial and fungal pathogens. These pathogens 
therefore have not co-evolved with tepary beans, and the species is a source of resistance 
alleles to pathogens such as common bacterial blight (Drijfhout and Blok 1987, Singh and 
Muñoz 1999). Tepary beans are in the tertiary gene pool of all domesticates except P. 
lunatus, meaning that useful alleles from these wild populations can only be incorporated 
into P. vulgaris, P. coccineus, and P. dumosus through the use of advanced breeding 
techniques (e.g., congruity backcrossing: Haghighi and Ascher 1988,  Muñoz et al. 2004), 
embryo rescue (Thomas and Waines 1984), other advanced techniques (Mejía-Jiménez 
et al. 1994), or bridging species and hybrids (Barrera et al. 2018).  

 
Wild runner bean (P. coccineus) is found throughout the highlands of Middle 

America, spanning from northern Mexico through Guatemala and Honduras to Colombia 
(Fig. 2; Freytag and Debouck 2002, Chacón-Sánchez 2018). Within this distribution, it is 
found at high elevations, where it is semi-perennial. Two subspecies, P. coccineus subsp. 
coccineus and P. coccineus subsp. striatus have been recognized, although genetic and 
phenotypic evidence indicates that these are not evolutionarily differentiated (Guerra-
García et al. 2017). The species is adapted to the coolest environments of domesticated 
Phaseolus (Bitocchi et al. 2017).  

 
Year bean (Phaseolus dumosus) combines certain traits of P. coccineus and P. 

vulgaris. Like P. vulgaris, it has epigeal germination and anthers dehisce towards the 
stigma, but in seed size and environment of adaptation, the species resembles P. 
coccineus (Mina-Vargas et al. 2016, Bitocchi et al. 2017). P. dumosus has a root structure 
and perenniality intermediate between these species, and displays strong, thickened 
storage roots that can lead to weak perenniality, but which are not truly tuberous like 
those of P. coccineus (Schmit and Debouck 1991). The species arose through a complex 
network of cross-pollinations between ancestral populations of P. vulgaris and P. 
coccineus (Llaca et al. 1994; Mina-Vargas et al. 2016). P. costaricensis is similarly the 
polyphyletic result of crosses between this series of relatives (Mina-Vargas et al. 2016). 
The plastid genome of P. dumosus bears great similarity to P. vulgaris, while much of the 
nuclear genome is more similar to P. coccineus (Llaca et al. 1994, Mina-Vargas et al. 
2016). This is likely the result of the partial incompatibility between the two species, in 
which successful hybridization requires P. vulgaris to be the maternal parent (Wall 1970, 
Shii et al. 1982, Hucl and Scoles 1985). Wild P. dumosus is found in an extremely limited 
range in the mountainous region of western Guatemala and southern Chiapas (Fig. 2). 
This contrasts with the much larger ranges of wild relatives of all other Phaseolus 
domesticates and may be responsible for the low diversity found in the species (Schmit 
and Debouck 1991, Freytag and Debouck 2002).  
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Unlike other domesticated Phaseolus, P. dumosus and P. coccineus are 
allogamous. This is related to their unique floral colors and morphologies (Schwember et 
al. 2017, Bitocchi et al. 2017). P. dumosus and P. coccineus are in the secondary gene 
pool of common bean (Fig. 1), and it is possible that the outcrossing nature of these 
species could be introgressed into P. vulgaris for hybrid seed production in the future. 
The compatibility of these crosses is highly dependent on parent choice, and careful 
selection of parents is important for introgression of characteristics between these 
species (Gepts 1981, Singh 2001, Schwember et al. 2017). 

 
The range of wild common bean (P. vulgaris) is expansive, ranging from the state 

of Chihuahua in northern Mexico (e.g., G23463, collected at 28.3° N. Lat., -108.5°W. 
Long.) to the state of Córdoba in Argentina (Sirolli et al. 2015, −31.3° N.Lat, −64.6° W. 
Long.) over a distance of some 10,000 km (Fig. 2). Despite its widespread distribution, 
the species' ecological niche in the wild is restricted by several variables. Among these, 
it is adapted only to middle-elevation areas, and is not found below approximately 600m 
in elevation. It also requires a dry period to allow pod shattering and seed dispersal. 
Common bean is adapted to relatively moderate temperature and rainfall conditions, 
which may be a factor favoring its widespread cultivation by humans. These ecological 
factors are not found in many regions of the Neotropics, leading to a disjointed distribution 
with several geographically and genetically distinct populations. Gaps in the distribution 
of wild common bean are found in the isthmus of Tehuantepec, the isthmus of Panama 
and the neighboring region of Chocó in Colombia, and three locations throughout the 
Andes. Dispersal between these regions is believed to be the result of rare long-distance 
migrations by seed-eating birds like doves, as suggested by the local name for wild beans 
‘frijol de paloma’ (dove or pigeon bean; Debouck et al. 1993, Ariani et al. 2018).  

 
The earliest divergence within the common bean gene pool separates a population 

found in Ecuador and northern Peru from all other members of the species. This is 
believed to have occurred approximately 373,000 years (Ariani et al. 2018) or 260,000 
years ago (Rendón-Anaya et al. 2017a). This population is unique in that it has the type I 
(“Inca”) phaseolin lacking tandem direct repeats of 15 bp in the fourth exon and/or 27 bp 
in the sixth exon, found in phaseolin types of wild and domesticated accessions of the 
Middle American or Andean gene pools (Slightom et al. 1985). The absence of tandem 
direct repeats is significant because it represents an ancestral state as duplication 
generating repeats is more likely than deletions that precisely excise one of the members 
of the duplication. Further evidence for the ancestral nature of the I phaseolin types is 
their presence in two of the most closely related taxa to P. vulgaris, P. coccineus and P. 
dumosus. Additional data suggesting the uniqueness of the I phaseolin population include 
nucleotide divergence superior to that separating the Middle American and Andean gene 
pools, a position in a separate clade, sister to all P. vulgaris genotypes both for nuclear 
sequences and a chloroplast DNA fragment, an early split of the I phaseolin population 
compared to the Middle American and Andean gene pools, and a distinct metabolome, 
reproducing the phylogenetic separation based on nuclear sequence data (Rendón-
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Anaya et al. 2017a). Hybridization experiments have shown that there is a partial loss of 
fertility in crosses between this earliest diverging population and the core Middle 
American and Andean common bean populations (Koinange and Gepts 1992). On this 
basis, the I phaseolin group from Ecuador and Northern Peru has been re-classified into 
a separate, sister species, P. debouckii (Rendón-Anaya et al. 2017b). 

A second major divergence occurred later, separating Middle American wild 
common beans and those of the southern Andes. This is predicted to have occurred 
roughly 87,000 (Ariani et al. 2018), to 110,000 (Mamidi et al. 2013), to 165,000 years ago 
(Schmutz et al. 2014). Fst values between the populations have been repeatedly 
estimated at 0.34, indicating strong population differentiation (Schmutz et al. 2014, Ariani 
et al. 2018). The wild southern Andean gene pool is divided into two geographically 
distinct groups, one found in central Peru and the other ranging from southern Bolivia to 
Argentina. Although these two southern Andean populations are disjunct today and can 
be genetically distinguished, multiple studies have determined that they are closely 
related and therefore must have diverged recently (Koenig and Gepts 1989; Kwak and 
Gepts 2009, Bitocchi et al. 2012, Rodriguez et al. 2016, Ariani et al. 2018). The Andean 
population has allele frequency patterns that indicate it underwent a major pre-
domestication bottleneck which reduced its genetic diversity, consistent with its origin in 
a rare long-range dispersal event (Ariani et al. 2018); this dispersal event was followed 
by a later population size expansion that continues to the present (Rossi et al. 2009, 
Bitocchi et al. 2012, Mamidi et al. 2013, Schmutz et al. 2014, Ariani et al. 2018). In 
contrast, there does not appear to have been a major bottleneck in the wild Middle 
American population. The genetic differentiation between these gene pools leads to 
hybrid lethality in some cross-pollinations, due to autoimmune effects of specific allele 
pairs of complementary genes, one of Mesoamerican origin (Dominant Lethal-1 or Dl-1) 
and the other of Andean origin (Dominant Lethal-2 or Dl-2; Shii et al. 1980, Gepts and 
Bliss 1985, Koinange and Gepts 1992; Hannah et al. 2007). 

Genetic diversity of wild common bean varies by gene pool and by the type of 
marker used. Numerous studies have indicated that the wild Middle American population 
of common bean is highly diverse relative to all other wild and domesticated groups 
(Chacón-Sánchez et al. 2007, Kwak and Gepts 2009, Schmutz et al. 2014, Rodriguez et 
al. 2016, Ariani et al. 2018). Most of these studies have determined that the Andean wild 
population has less than half the genetic diversity as the Middle American population. 
These studies have determined that the ancestral Inca-phaseolin gene pool of Ecuador 
and northern Peru (P. debouckii) has a level of diversity intermediate between the Middle 
American and Andean wild populations (Kwak and Gepts 2009, Bitocchi et al. 2012, 
Schmutz et al. 2014, Ariani et al. 2018). The greater diversity of the Middle American wild 
population may be related to its greater geographic extent than other wild common bean 
groups, as it is distributed both latitudinally and longitudinally north of the Isthmus of 
Tehuantepec in Mexico. The fact that the distribution of Mesoamerican gene pool spans 
from northern Mexico to the northernmost Andes in Colombia, implies an additional 
dispersal event from Mesoamerica through Central America into the northern Andes. 
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Thus, the current distribution of wild common bean is the result of at least three major 
dispersal events between Middle America and the Andes of South America.  

The diverse Middle American wild populations of common bean can be divided 
into several subgroups, which vary slightly based on sampling (e.g., Bitocchi et al. 2012, 
Rodriguez et al. 2016, Ariani et al. 2018). In general, at least three subgroups are 
recognized. One of these is endemic to the central Mexican states of Guerrero, Morelos, 
Puebla, and the state of Mexico. This population has relatively low diversity, which may 
be the result of the region’s unique climate, volcanic soils, or other factors (Rodriguez et 
al. 2016). A different subpopulation predominates in all other areas to the northwest of 
the isthmus of Tehuantepec, from Chihuahua to northern Michoacán, and also in Oaxaca 
in the south. This genetic-geographic pattern clearly mirrors that of teosinte, the wild 
ancestor of maize (Moreno-Letelier et al. 2020). To the southwest of the isthmus of 
Tehuantepec, another subpopulation is found in southern Mexico, Central America, and 
Colombia. Its broad geographic range covers greater ecological diversity than other wild 
groups (Rodriguez et al. 2016). Despite this, the subpopulation cluster has similar levels 
of diversity to other Mesoamerican wild P. vulgaris groups. 

Thus, the genealogy of the major gene pools of P. vulgaris can be presented as 
follows (Fig. 3). In keeping with the Middle American origin of the genus Phaseolus, an 
ancestral evolutionary lineage existed at one time in Mesoamerica which would ultimately 
evolve into P. vulgaris. From this lineage, a long-distance dispersal event – most likely 
bird-mediated - around 0.4-0.5 M years transported wild seeds from this region of origin 
to the western Andean region, now occupied by Ecuador and northern Peru. A 
subsequent long-distance dispersal event, also bird-mediated, conveyed seeds around 
0.1 M years ago to the region encompassed by southern Peru, Bolivia, and northwestern 
Argentina. In the meantime, the original Mesoamerican ancestral lineage evolved into the 

 
Figure 3. Genealogy of the common bean (P. vulgaris) evolutionary 
lineage (from Kuzay et al. 2020) 



 
16 Phaseolus CGC: Crop Vulnerability Statement (September 2020) 

contemporary wild Mesoamerican P. vulgaris gene pool. Two geographically distinct 
domestications then took place, one in Mesoamerica and the other in the southern Andes 
(P. debouckii was never domesticated). Subsequent to each domestication, 
ecogeographic differentiation led to the existence of three to four races (Singh et al. 
1991a) in the two main geographic, partially genetically isolated gene pools. One to two 
ecogeographic races were then disseminated to different continents, thus achieving the 
worldwide distribution common bean is known for nowadays.  

3. Urgency and extent of crop vulnerabilities and threats to food security 
 

3.1. Genetic uniformity in the “standing crops” and varietal life spans: C. Urrea, J. 
Osorno, P. Gepts, J. Myers, J.D. Kelly, M. Brick 
 

Dry beans 

There is a concern about genetic vulnerability of the bean crop in the U.S. and the lack of 
adequate genetic diversity to meet specific eventualities. Although commercial production 
is relatively isolated across a dozen geographically separate areas across the U.S., there 
is a potential threat from localized genetic vulnerability within specific production regions. 
The tradition of growing only one or a few market classes within a geographic region, 
coupled with genetic similarities among cultivars of a class increases the problem. 
However, market class diversification has occurred in Michigan in the last few decades. 
Navy beans that once dominated the acreage in Michigan, now only constitute 32% of 
the acreage; blacks occupy 49% of the acreage, while small reds account for 10%. The 
navy class is dominated (90%) by two cultivars, Merlin and Medalist, whereas the black 
bean class is dominated by Zorro and Zenith, each having about 50% market share. Both 
Medalist and Merlin trace back parentage to the early upright navy bean cultivars, 
Mayflower, Mackinac, Avanti and Vista, whereas Zorro is a parent of the Zenith black 
bean cultivar. Acreage of the large seeded cranberry, light, and dark red kidney bean 
classes has decreased over the past 20 years, with a small increase in the white kidney 
bean class. Breeding progress in the dark red kidney class has been limited, with two 
cultivars Montcalm (released in 1974) and Red Hawk (released in 1998) dominating the 
acreage. The vulnerability situation in Michigan has improved in recent years with the shift 
away from Seafarer and Sanilac navy cultivars that constituted 90% of the acreage for 
over three decades and a much shorter life span among current cultivars. In addition, 
black, small red, dark red kidney, light red kidney, white kidney, and cranberry bean 
cultivars that possess unique genetic backgrounds from navy beans have expanded to 
68% of the acreage in Michigan.  

During the past ten-year period dry bean production has fallen in Colorado, with 
production stabilized at 45,000 to 60,000 acres annually. Production remains at 
approximately 85% pinto 10% kidney, 3% yellow, and 2% Anasazi beans. The variety mix 
for pinto has shifted to more upright cultivars with public cultivars Croissant, Longs Peak, 
Montrose, and Othello on less than half the acreage and private cultivars Windbreaker, 
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Sinaloa, Monterrey, Santa Cruz, Medicine Hat and others sharing the remaining acreage. 
Most of these cultivars share a fairly narrow genetic base from the Durango race of the 
Mesoamerican gene pool. New pinto cultivars such as Centennial, Twin Falls, and others 
have recently been introduced that were developed by introgression of genes from 
outside the pinto market class. Growers are seeking better resistance to white mold, 
bacterial pathogens such as common bacterial blight, halo blight, and brown spot, as well 
as more upright architecture and early maturity to facilitate direct or near direct harvest 
using the MacDon swather. These traits will require introgression of genes (mostly from 
marker-assisted selection) for non-market types and unadapted germplasm to achieve 
the highest level of resistance or plant architecture. In recent years, slow darkening pinto 
beans are becoming important, but have not penetrated the market in any sizable portion 
at this time. Growers continue to desire higher yield and improved seed size, color and 
cooking quality. An interest in health benefits of dry beans steadily increases by 
consumers and will require the introgression of novel germplasm sources.   

Nebraska was first in great northern, second in pinto and light red kidney, and fourth 
in black bean production in the United States in 2016. Approximately 138,000 acres were 
planted in 2016, with an average yield of 2,776 lb acre-1 and a production value of $77 
million. In 2015, there was a high incidence of common bacterial blight (CBB), a major 
disease of common bean, caused by the seed borne bacterium Xanthomonas axonopodis 
pv. phaseoli and the brown pigmented variant X. axonopodis pv. phaseoli var. fuscans 
(Xapf), in western Nebraska. Both species produce the same symptoms on bean leaves 
and infest the seed internally and externally affecting negatively the seed quality. The 
great northern cultivar ‘Coyne’ which was bred specifically for adaptation to the common 
bean growing conditions of Nebraska and for enhanced resistance to CBB, was 
negatively affected by a disease resembling CBB in 2015. However, the brown-pigmented 
variant Xapf was isolated from Coyne’s leaves and pod samples. There is now a need to 
identify sources of Xapf resistance. Bacterial wilt, caused by Curtobacterium 
flaccumfaciens pv. flaccumfaciens, has been detected from more than 400 fields 
throughout the Central High Plains in 2011. The pathogen has apparently become well 
established in Nebraska. Bacterial wilt reduces seed quality and is considered an A2 
quarantine pest for Europe where it is subject to phytosanitary regulations in some 
countries and some states in the U.S. Very few sources of bacterial wilt resistance have 
been reported. The development of improved varieties and germplasm with high yield 
potential, resistance to multiple diseases, greater water use efficiency, and better seed 
quality must continue to maintain market competitiveness for the Nebraska bean industry.  

North Dakota and Minnesota (MINDAK) is the largest producing region of dry beans 
in the U.S. Approximately 650,000 acres of dry beans are grown every year in North 
Dakota, which is equivalent to almost 40% of the U.S. total production. Main market 
classes in North Dakota are pinto, navy, and black, accounting for almost 90% of the total 
area. Other minor classes include great northern, pink, small red, and yellow. 
Contrastingly, the neighbor state of Minnesota is the largest producer of kidney beans in 
the U.S., accounting for almost 50% of the total production. Navy and black market 
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classes are also of economic importance in Minnesota. For pinto beans, six varieties are 
the most commonly grown while for the rest of market classes have no more the four or 
five main cultivars covering most of the production. The dry bean crop in the MINDAK 
region is vulnerable to biotic stresses, mostly fungal and bacterial diseases such as rust, 
white mold, anthracnose, root rots, and bacterial blights are the main production 
constraint. In addition, abiotic stress such as flooding at early stages, drought during 
reproductive stages, and frost at final stages are the main problems. Finally, since most 
production is rainfed, water use efficiency is an important component for productivity. 
Genetic diversity may have been narrowed significantly by the recent interest in upright 
cultivars that allow direct harvest, especially in pinto and great northern market classes. 

More than 80% of dry and snap bean seed production in the U.S. takes place in the 
PNW (ID, OR, WA), for shipment throughout the U.S., Canada and globally. This means 
that many different cultivars are grown within the region, and consequently, genetic 
variability is likely the highest in the nation. Seed-borne diseases introduced from 
elsewhere as well as natural disasters could strongly affect the supply of bean seed. The 
dry climate in combination with disease quarantines limits the spread of bacterial and 
fungal diseases, but the conversion of irrigation systems from gravity fed (furrow or rill) to 
overhead center pivots has increased the risk from diseases. Drought resulting from 
reduced snow pack in the mountains, the primary source of irrigation water, poses the 
greatest climatic risk factor, but thus far there has never been a regional crop failure. 
Approximately 80,000 acres of commercial dry beans and 20,000 acres of seed beans 
are produced in the PNW. While the seed acreage is genetically diverse, the commercial 
acreage relies on relatively fewer cultivars. No specific cultivar dominates the acreage 
planted for any given market class, but as in the Midwest and elsewhere, cultivars with 
improved upright architecture are favored. Of total commercial bean acreage grown in 
2016, 30% were pintos, 18% were small reds, 10% were pinks, and 10% were blacks.   

California is the sixth-leading producer of dry beans, producing about 5 percent of the 
U.S. crop in 2006-08. California's climate is favorable for most types of dry beans, with a 
wide variety produced annually. However, four bean classes dominate (accounting for 86 
percent of output). These include baby limas (P. lunatus; 27 percent of California's crop), 
large limas (P. lunatus; 25 percent), black-eyed peas/beans (Vigna unguiculata; 21 
percent), and garbanzo beans (Cicer arietinum; large chickpeas) (13 percent). Production 
is concentrated mostly in the Central Valley (both the Sacramento and San Joaquin 
Valleys), with Stanislaus (18 percent), San Joaquin (14 percent), and Sutter (12 percent) 
counties the major producers. Common bean production is small and of limited 
significance compared to the other four classes and that in other states. Large lima bean 
production is unique to California. Vulnerability is limited by the existence of three different 
bean genera, the existence of two planting seasons (winter for garbanzos vs. summer for 
lima bean and blackeyed peas), crop dispersion among other field and orchard crops, 
and varietal diversity originating in two distinct domestication areas (Mexico for small-
seeded limas vs. Ecuador for large-seeded limas). On the other hand, overall in-field 
varietal diversity is limited compared to the available diversity in gene banks.  
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Snap beans 

In attempting to assess the vulnerability of U.S. snap beans, the problem appears 
less acute initially for several reasons. Snap beans are a minor crop with less than a 
quarter of a million acres planted across ten states. In those states with relatively high 
concentration of bean acreage, Wisconsin, Oregon, Florida, Georgia, and New York, 
there is intercrop buffering and dispersion of relatively small bean fields of several 
different cultivars. It is unlikely that horizon-to-horizon plantings of single snap bean 
cultivars will occur as with wheat, corn, or soybean production, in part due to the small 
acreage, but also due to the diversity in cultivars developed specifically for the canning, 
frozen, and fresh market.  

Unlike dry beans where most cultivars are produced by public breeding programs, 
only three part-time public programs breed snap beans, with the majority of cultivars being 
bred by a half-dozen seed companies for U.S. and European markets. With increased 
use of intellectual property protection, exchange of germplasm between the public and 
private sector, as well as among companies has become increasingly rare. Nearly all 
snap bean cultivars developed privately are protected with utility patents and “bag tag” 
licenses that prohibit use of cultivars in research. Such a pattern of intellectual property 
protection impacts genetic vulnerability in two ways: 1) companies become “inbred” in 
their in-house genetic base because little exchange happens outside of each company’s 
base material, and 2) Seeds of cultivars protected with utility patents are not placed in the 
USDA-NPGS W6 repository upon release, which are made publicly available after the 
patent expires. The U.S. Patent and Trademark Office does require that seeds of a 
patented cultivar be deposited in a repository to show “reduction to practice”, but the 
repositories that companies typically use are not easy to identify and access, and there 
is no guarantee that the seeds will be saved beyond the 20 year life of the patent.  

There is a well-regulated seed production industry for snap beans and a wide 
geographic separation of basic seed stocks in the arid western states from the major 
Midwestern and/or eastern production states. This separation of seed stocks and 
commercial production greatly reduces the likelihood of buildup of seed-borne pathogens. 
This system of seed production, however functional for snap beans, has been utilized 
less with dry beans in Michigan and North Dakota.  

Recent molecular evidence suggests that snap beans possess similar or even 
greater genetic diversity than dry beans (Weeden 1984; Haley et al., 1994a; Skroch and 
Nienhuis, 1995; Wallace et al., 2018). A STRUCTURE analysis of snap bean with 
reference to known races of dry bean found eight distinct groups within snap bean 
(Wallace et al., 2018). Snap bean mirrors dry bean in having two centers of domestication 
as would be expected for multiple derivations from dry beans at different times and in 
different places. Some snap bean types may have been developed by Native Americans 
in both Middle American and Andean centers, but the majority of cultivars were probably 
developed in Europe after the Colombian exchange. Another characteristic of snap beans 
that distinguishes them from dry bean is that has been a high degree of mixing across 
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racial and centers of domestication boundaries, compared to the rather distinct 
boundaries found in dry beans.  

Another assessment of the relative genetic vulnerability differences exhibited by 
snap and dry bean cultivars is demonstrated by their respective reactions to different 
races of the rust fungus. Stavely (pers. comm.) reported in 1989, that 66 bush snap bean 
cultivars and 15 bush wax beans had the same reaction to rust races 38 to 70, similar to 
one of the original processing type snap bean cultivars, Early Gallatin. In addition, similar 
reactions were exhibited by the majority of commercial light and dark red kidney cultivars. 
This similarity of reaction to rust was exhibited by many of the PI lines originated from the 
Andean domestication center. The host cultivar's reaction to these races indicated greater 
genetic diversity in U.S. dry bean cultivars than in U.S. snap bean cultivars. In recent 
years new snap and dry bean cultivars have been released that confer resistance to races 
of rust in the U.S. The resistance genes utilized by cultivars released in the past 15 years 
has been dominated by the Ur-3 allele in dry beans and Ur-4 allele in snap beans. 
Resistance provided by the Ur-3 gene has now broken down in MI and ND.  

3.2. Threats of genetic erosion in situ: A. Delgado Salinas, D.G. Debouck, J. Acosta 
Gallegos, P. Gepts 

There have been significant reductions in the genetic diversity in situ of domesticated 
Phaseolus in Latin America. In addition to the milpa agroecosystem (associated cropping 
of beans, maize, and squash), in itself a telling example, the Jalisco eco-geographic race 
of P. vulgaris, is affected by erosion because few people still plant the climbing lines 
associated with maize cultivation. In the sierra of Jalisco and Nayarit towards the Bajío 
region, it is very difficult to obtain labor, especially for harvest. Hence, the bean crop has 
been subjected to changes in bean production systems, which have affected its 
genetic composition (e.g., Martínez-Castillo et al. 2012). 

The bean crop migrated to the north and northeast (e.g., Zacatecas state), became 
mechanized, and adopted new varieties with different growth habits. There was a similar 
situation in 1985-1987 in the highlands of Chimaltenango and Quezaltenango in 
Guatemala. It was more profitable for smallholder farmers to plant horticultural crops of 
cool climates for sale in cities or for export than to continue growing the traditional milpa 
with chomborotes (P. coccineus). The key species of the cropping system – maize – had 
been changed from landraces to less robust F1 hybrids or corn-on-the-cob varieties, 
which were not strong enough for associated cropping with beans.  There has been a 
wholesale substitution of landraces by uniform/homogeneous improved varieties, mainly 
in the Center-North states (Chihuahua, Durango, Zacatecas, San Luis Potosí, 
Guanajuato, and Querétaro) and Pacific Coast states (Sinaloa, Nayarit). Thus, the 
changes with regard to genetic resources have involved both substitutions of varieties 
and replacements of entire agro-ecosystems. 
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In the case of wild Phaseolus, changes in land use have been an important factor. 
Expansion of urban zones is very relevant here (e.g., Fig. 4), with a complete 
replacement of the original vegetation. One can cite specific populations (with collector 
name and number) that have been lost (see “Cuadernos de Faseología” of D. Debouck 
at CIAT). Examples include a population of P. maculatus collected by Edward Lee Greene 
in 1880 in Silver City, several populations of P. polystachios in Florida (collectors Curtiss 
and Rugel), a population of P. coccineus (collector: Bourgeau) where there is now a metro 
station of Mexico City, and the type population of P. bolivianus (Holway 411) where there 
is now a neighborhood of Cochabamba in Bolivia. Many additional examples can be 
mentioned. For example, the hills surrounding the city of Querétaro, it is still possible to 
observe isolated plants of P. acutifolius, P. vulgaris, P. coccineus, and mainly P. 
microcarpus. Nevertheless, construction of new housing in these hills has changed the 
environment considerably and it is highly probable that these wild plants will disappear 

 
Figure 4. Examples of urban genetic erosion of wild common-bean. a. Cuernavaca, Morelos, 
Mexico. b. Santo Domingo de Albarrada, Oaxaca, Mexico (Photos: P. Gepts) 
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completely in 2-3 years. 

Agriculture itself has been a cause of loss of genetic diversity, with its use of 
herbicides or the clearing of land where previously there was natural vegetation. In the 
basin of Rio Grijalba in the state of Chiapas, Mexico, the boost in the cultivation of coffee, 
sugarcane, and fruit crops, together with the use of herbicides eliminated wild populations 
of P. vulgaris and other Phaseolus species from milpa fields, where wild P. vulgaris was 
tolerated and consumed, together with the domesticated beans. Higher coffee prices in 
Costa Rica have favored expansion of the coffee crop; this has affected populations of P. 
costaricensis, P. lunatus, P. tuerckheimii, and P. vulgaris. Similarly, national parks in 
Panama face pressure from encroaching crop (Debouck and Rodriguez-Quiel 2020). 

Migration away from the land to urban centers in Mexico or other countries like 
the U.S. have led to the abandonment of rainfed fields, such as in the center and 
southwest of the state of Guanajuato, Mexico. There are also an estimated 4 million goats 
that pasture in vegetation close to villages and cities and constitute a threat to natural 
vegetation in general, and Phaseolus population more specifically. 

In addition, global climate change will affect Phaseolus in situ genetic resources, 
especially with an increase in temperature of 1-2 °C in various parts of the distribution of 
wild Phaseolus species. This effect may affect not only the plants themselves but also 
their pollinators. Even though several wild Phaseolus species are self-fertilized, Charles 
Darwin had already demonstrated in 1858 the beneficial effect of Apidae pollinators on 
seed production.  Reduced fitness will ultimately lead to extinction. It is possible that wild 
populations will increase in altitude. For tall peaks like the Colima Volcano or the Orizaba 
Peak, there is a theoretical possibility of an altitude increase. However, in Central 
America, the smaller volcanoes provide a more limited opportunity for altitudinal escape, 
which may affect several populations of P. dumosus and P. vulgaris, such as the Agua, 
Fuego, and Acatenango volcanoes near Antigua, Guatemala, and P. angucianae in the 
the Fila Cruces range in southeastern Costa Rica (Debouck et al. 2018). 

Another factor is the change in precipitation patterns, for example in the south of 
the state of Coahuila, Mexico, although wild populations from arid regions have been 
exposed to this type of rainfall changes for several thousands of years. 

In the majority of archaeological ruins, wild species of Phaseolus are often 
observed. When these ruins become tourism attractions, upkeep of the land at and 
surrounding these sites results in wild populations being eliminated. 

 
3.3. Current and emerging biotic, abiotic, production, and dietary threats and needs 

3.3.1. Biotic Stress: M.A. Pastor-Corrales, A.V. Karasev, C. Estévez de Jensen, 
J.K. Brown, J.R. Myers, T. Porch, J.S. Pasche, J.R. Steadman, J.S. Beaver 

Common bean (Phaseolus vulgaris L.) production is affected by numerous types of 
pathogens and insect pests. This discussion will be limited to the genetic vulnerability of 
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beans to the most important diseases and pests worldwide.  Host resistance, reviewed in 
great detail in other references (Kelly et al 2003; Kelly and Vallejo 2004; Miklas et al. 
2006; Singh and Schwartz 2010; Singh and Miklas 2015), is an important component of 
most management strategies for the dynamic complex of biotic constraints encountered 
in various bean cropping systems throughout the world (Schwartz et al. 2005). In addition 
to incorporating genes from P. vulgaris, disease and pest resistance genes have been 
introgressed from secondary and tertiary gene pools (Abawi et al 1978; Kusolwa and 
Myers 2011; McElroy 1985; Mahuku et al 2002; Schwartz et al. 2006; Scott and Michaels 
1992; Singh and Munoz 1999). 

Viral diseases 

Bean common mosaic virus (BCMV) and Bean common mosaic necrotic virus (BCMNV), 
both seed-transmitted potyviruses, are the most important viral diseases in common bean 
(Drijfhout and Morales 2005). Genetics of resistance to both BCMV and BCMNV in 
common bean is governed by the same five genes, one dominant (I) and four recessive 
(bc-u, bc-1, bc-2, and bc-3) (Drijfhout 1978; Drijfhout and Morales 2005). The two 
recessive genes, bc-1 and bc-2, control systemic movement of both BCMV and BCMNV 
in common bean plants, but often confer partial or incomplete resistance if present alone 
(Feng et al. 2017, 2018). The bc-3 gene is very effective against BCMNV; however, an 
isolate of BCMV that overcomes bc-3 was identified (Feng et al. 2015). The I gene is the 
most widely used and provides complete immunity against all strains of BCMV, but 
expresses a systemic necrotic reaction in common bean when infected with BCMNV; this 
systemic necrosis can be prevented if any of the recessive genes, bc-1, bc-2, or bc-3 are 
present. The best strategy for breeding for resistance to these two important viruses is to 
date is to combine the I and bc-3 genes. There are several common bean cultivars from 
different market classes that combine the I and bc-3 genes (Beaver et al, 2015; Beaver 
et al; 2020; Pastor-Corrales et al, 2007). 

The genus Begomovirus (Geminiviridae) has long be problematic in the Americas 
where common bean is widely cultivated (Bird et al. 1973, Brown, 1990; Brown and Bird, 
1992; Morales and Jones, 2004). They are transmitted variably by certain members of 
the whitefly Bemisia tabaci (Genn.) cryptic species. No begomovirus infecting bean 
endemic to the American Tropics has been reported to be seed transmitted. Several are 
experimentally transmissible by mechanical inoculation. Among bean-infecting 
begomoviruses, several species were described from bean and are considered the core 
bean-infecting species in part because of they were the first begomoviruses identified 
from common bean and additionally, because their host range is restricted to bean and/or 
may also include one or several leguminous wild hosts. This latter observation suggests 
these viruses would likely become extinct in the landscape if bean ceased to be cultivated 
in these locales where the core begomoviruses are endemic, in that their nearly exclusive 
host-association with common bean,  Macroptilium spp., Calopogonium and wild 
Phaseolus spp. (Morales and Jones, 2004) has either resulted from an inherent narrow 
host range and/or selection against a possibly once broader host range that apparently 
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has  precluded them from expanding their extant host range. These viruses are Bean 
golden mosaic yellow virus (BGYMV) (Caribbean Basin, including Dominican Republic, 
Mexico, and Puerto Rico), Bean dwarf virus (BDV) (Colombia), Bean golden mosaic virus 
(BGMV) (Brazil and elsewhere in South America), and Bean calico mosaic virus  
(BCaMV) (Mexico, southwestern U.S.) (Brown et al. 1999).  Phylogenetically, the core 
bean-infecting begomoviruses are evolutionarily divergent from one another, each 
belonging to a distinct clade among the New World begomoviruses. Also reported from 
the Caribbean Basin, Central America, and/or are several begomoviruses are endemic in 
wild legume  (Fabaceae) hosts that occur throughout much of the American Tropics, and  
although they have been identified from naturally-infected common bean, they have not 
been considered economically important. These include two species from Macroptilium 
lathyroides (L.) Urb. endemic to the Caribbean Basin and Mexico, Macroptilium golden 
mosaic virus (MGMV), identified from M. lathyroides  in Cuba and Mexico (J.K. Brown, 
unpublished) and from Wissadula amplissima in Jamaica (Collins et al. 2010),  and 
Macroptilium mosaic virus (Brown, 2010; Brown et al. 2011; Idris et al., 1999, 2003). Two 
others associated with the wild legume, Rhychosia minima (L.) DC are the broad-host 
range Rhynchosia mild mosaic virus (Brown and Idris, 2009) and the recombinant 
Rhynchosia yellow mosaic Yucatan virus (Hernández-Zepeda et al. 2010) reported in 
Florida, USA, Mexico, and Puerto Rico . The latter viruses are likely widely distributed 
throughout the Caribbean region and Central America, and although they infect common 
bean neither has been reported to be economically important despite their apparent wide 
co-distribution where BGYMV also occurs. Many begomoviruses are known to naturally 
or infect bean as a secondary host and their economic importance has not been 
evaluated.  Among these viruses are Cotton leaf crumple virus (western US and Mexico) 
(Brown et al., 1986), the Squash leaf curl virus complex comprising four species (Cucurbit 
leaf curl virus, Melon chlorotic leaf curl virus, Squash leaf curl virus, and Squash mild leaf 
curl virus (US, Mexico, Caribbean) (Isakeit et al.1994, Brown et al., 2001, 2002, 2011, 
Idris et al., 2008),  and Tomato yellow leaf curl virus-Israel (severe, TYLCV-IL) 
(Papayiannis et al.. 2007).  

In particular, BGYMV has been the focus of most attention with respect to breeding 
because it has long been known to cause significant yield reduction in dry and snap beans 
in the Caribbean, Central America, Mexico, and Southern Florida (Singh and Schwartz, 
2010). Significant progress in BGYMV resistance breeding has been achieved in Puerto 
Rico with cultivars and germplasm developed in the Mesoamerican, Andean, Durango, 
and snap bean market classes through use of key sources of P. vulgaris and P. coccineus 
resistance (reviewed by Beaver et al., 2020). Breeding has been facilitated by use of 
existing and development of new molecular markers for MAS for resistance genes 
including bgm-1, bgm-2, bgm-3, Bgp-1, Bgp-2, and the QTL SW12. As the climate warms, 
incorporation of BGYMV resistance in snap beans will become increasingly important in 
Florida, while currently there is little incidence of BGYMV in Puerto Rico. 
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Fungal diseases 

The most damaging fungal foliar diseases of dry bean in the Americas and Africa include 
anthracnose, caused by Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & 
Cavara, rust, caused by Uromyces appendiculatus (Pers.) Unger, and Angular leaf spot, 
caused by Pseudocercospora griseola (Sacc.) Crouss & Braum. These three pathogens 
are known for their extensive and changing virulence diversity that includes hundreds of 
virulent strains or races. However, co-evolution in these pathosystems has resulted in the 
races of these three pathogens generally separating into two groups that correspond to 
the Middle American and Andean gene pools of common bean. Andean races most 
commonly infect beans of the Andean gene pool. Conversely, Mesoamerican races have 
broader virulence diversity and although they tend to infect common beans from the 
Middle American gene pool, they also infect beans from the Andean gene pool (Pastor-
Corrales, 1996; Balardin and Kelly, 1998). Infection by each of these pathogens can result 
in up to 100% yield loss under conditions favoring high disease development (Kelly and 
Vallejo 2004; Mahuku et al. 2002). To date, approximately 20 single and mostly dominant 
anthracnose resistance genes, identified by the Co-symbol, have been reported. Only the 
co-6 gene is recessive. In addition, Multiple alleles are present at the Co-1, Co-3, Co-4, 
and Co-5 genes (Kelly and Young, 1996, Valentini et al., 2017).  Similarly, 10 single and 
dominant genes rust resistance genes have been named, mapped and tagged with 
molecular markers. Five genes (Ur-3, Ur-5, Ur-7, Ur-11,and Ur-14) are present on 
common bean accessions of the Middle American gene pool and three genes (Ur-4, Ur-
6, Ur-9) are on common beans of the Andean Gene Pool. In addition, The  gene has been 
reported as a Mesoamerican gene present in an Andean (Redlands Pioneer) while the 
Ur-12 gene is a gene, present in Andean common bean common bean (Pompadour 
Checa 50 or (PC 50) is a gene associated with adult plant resistance and abaxial leaf 
pubescence (Hurtado-Gonzales et al., 2017; Jung et al., 1998). Angular leaf spot is an 
important yield-reducing common bean disease throughout the Tropics and particularly 
in South and Central America, as well as in the Caribbean, Mexico and multiple countries 
in Eastern, Central and Southern Africa (Nay et al., 2019). Changes in weather patterns 
may favor development of this disease in higher latitudes. Five major loci, Phg-1 to Phg-
5, conferring ALS resistance have been named, and markers tightly linked to these loci 
have been reported. Quantitative trait loci (QTLs) have also been described, but the 
validation of some QTLs is still pending at the time of this publication. The Phg-1, Phg-4, 
and Phg-5 loci are from common bean cultivars of the Andean gene pool, whereas Phg-
2 and Phg-3 are from beans of the Mesoamerican gene pool (Nay et al., 2019). Combining 
disease resistance genes from Andean and Mesoamerican centers of domestication in 
single common bean cultivars has been a successful strategy to combat these pathogens 
(Beaver et al. 2015; Kelly et al. 1998; 2001; Pastor-Corrales et al., 2007). However, 
numerous races have been described for all three pathogens, some of which overcome 
resistance genes integrated into currently grown cultivars (Balardin et al. 1997; 
Damasceno E Silva et al. 2007; del Rio-Mendoza et al. 2003; Goswami et al. 2011; 
Guzmán et al. 1995; Kelly et al. 1994; Markell et al. 2009; Pastor-Corrales et al. 2010). 
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Sources of resistance have also been identified in the secondary gene pool of P. vulgaris, 
namely P. dumosus and P. coccineus (Mahuku et al. 2002) 

White mold, caused by Sclerotinia sclerotiorum (Lib.) de Bary, affects hundreds of 
agricultural crops, including Phaseolus beans. In common bean, snap beans are even 
more susceptible than dry beans. Disease avoidance associated with varying 
environmental conditions and modification in plant architecture make phenotypic 
evaluations in the field difficult and greenhouse protocols do not always accurately 
correspond to field evaluations. However, improvements to methodologies to identify 
resistant cultivars under greenhouse conditions have been more successful (Schwartz 
and Singh 2013; Viteri et al. 2015). Numerous major effect QTL have been identified for 
resistance to the white mold pathogen, largely of Andean origin and from the secondary 
gene pool (P. costaricensis) (Jhala et al. 2015; Kolkman and Kelly 2003; Singh et al. 
2013). Recently, consensus QTL were identified using meta-analysis (Vasconcellos et al. 
2017). This relatively novel approach has the potential to accelerate resistance breeding. 

Root-rotting soilborne pathogens producing root and stem rot, include several fungi 
such as Rhizoctonia solani Kühn and Fusarium solani (Mart. Sacc.) and fungal-like 
organisms (numerous Pythium spp.). Fusarium root rot (Fusarium foot rot, dry root rot) of 
beans occurs in most bean-growing regions throughout the world. Root rots usually cause 
little damage in unstressed plants. However, under conditions of reduced root growth 
caused by drought, soil compaction, soil saturation (oxygen stress), or low soil fertility, 
root rot can nearly destroy a bean crop. Even the highest available levels of resistance 
are overcome by the pathogens when fields are flooded or roots are deprived of oxygen 
for short periods (e.g., 24h). Resistance to these pathogens is described as quantitative 
in nature and is not well understood. Sources of resistance have been identified, but the 
environment and agronomic practices play large roles in the expression of resistance. 
Additionally, these pathogens are nearly always found in a complex under field conditions, 
further complicating the introgression of resistance into improved germplasm (Abawi and 
Pastor-Corrales 1990; Schwartz et al. 2005). Germplasm with Andean backgrounds 
generally are more susceptible to root rotting pathogens. The transfer of resistance from 
the Middle American gene pool is ongoing but has been met with challenges. Recent 
breeding efforts have focused on incorporating vigorous root systems in an attempt to 
tolerate pathogen infection (Oladzad et al. 2019; Zitnick-Anderson et al. 2020). 
Appropriate crop management practices can reduce root rot disease pressure and 
improve the performance of bean cultivars with moderate levels of resistance (Abawi and 
Ludwig, 2002; Abawi and Widmer, 2000). 

Charcoal rot, also known as ashy stem blight, caused by Macrophomina 
phaseolina (Tassi) Goid. (Mph), infects beans in all growth stages resulting in poor 
emergence and yield reductions. Charcoal rot is influenced by abiotic factors especially 
high temperature, drought stress and plant age. Genotypes are more susceptible during 
the vegetative stage than during the reproductive stage. No commercial cultivars with 
resistance to Mph are available. Resistance to Mph isolate PRI16 in ‘Badillo’ was 
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conferred by a single recessive gene, whereas the resistance of ‘PC-50’ was controlled 
by two independent complementary recessive genes. Segregation patterns between lines 
derived from the cross ‘A 195 x PC-50’ suggested that a single dominant gene conferred 
resistance to Mph isolate PRI16 (Viteri and Linares, 2019). 

Bacterial diseases 

Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli 
(Smith) Dye (Xap), halo blight, caused by Pseudomonas syringae pv. syringae (van Hall), 
brown spot, caused by Pseudomonas syringae pv. phaseolicola (Burkh.) and bacterial 
wilt, caused by Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges) Collins & 
Jones, are the four main bacterial diseases that affect dry bean production worldwide. 
For CBB, resistance is quantitative, affected by the environment and pathogen strains, 
and originates in three different species, common bean, runner bean, and tepary bean 
(e.g., Singh and Muñoz 1999). 

Marker-assisted selection has proven useful to develop CBB-resistant, improved 
germplasm from a broad range of resistance sources. The SU91 marker is used for a 
source of resistance was derived from tepary bean (Singh and Schwartz, 2010). Zapata 
et al. (2010) identified a dominant gene associated with the SAP6 marker that confers 
moderate levels of resistance to CBB. Using the SAP6 and SU91 markers, Urrea et al. 
(2019) were able to develop an improved Great Northern cultivar. Zapata et al. (2004) 
released five common bean germplasm lines with high levels of resistance to common 
blight derived from P. coccineus. Miklas et al. (1999) also developed and released 
common bean germplasm lines with enhanced levels of common bacterial blight derived 
from P. coccineus. The common blight resistant pinto bean germplasm line TARS-PT03-
1 (Smith et al., 2005) was derived from a cross with the interspecific P. vulgaris x P. 
coccineus germplasm line TARS VCI-4B. The white-seeded common bean cultivar Bella 
combines resistance to CBB with resistance to BCMV and BCMNV, and to BGYMV 
(Beaver et al., 2018). 

Numerous resistance genes have been identified to control halo blight; however, 
race 6, possibly the most prevalent race, overcomes all of these genes (Taylor et al. 
1996). QTL have been recently identified that provide good control of race 6 (Tock et al. 
2017) but these have yet to be integrated into cultivars (González et al. 2016). Bacterial 
wilt is not as widespread as the other bacterial diseases of dry beans. Resistance to 
bacterial wilt is thought to be quantitative by limiting bacterial colonization in the xylem 
tissue (Maringoni et al. 2015; Valentini et al. 2011). Little research has been performed 
on bacterial brown spot, but some resistant lines have been identified (Muedi et al. 2015). 
Like the other bacterial diseases, resistance to brown spot is heavily dependent on the 
environment. 

Pests 

In addition to pathogens, insect pests are extremely damaging to common beans. 
The potato leafhopper, Empoasca fabae (Harris) is an important source of economic loss 
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to beans produced in the U.S. and Canada east of the Rocky Mountains. Brisco et al. 
(2014) identified a novel QTL (LH2.2) for E. fabae nymph counts that is possibly 
associated with antibiosis resistance. They reported fourteen QTL associated with 
resistance to Empoasca spp. that explained up to 66% of phenotypic variation. The 
authors concluded that marker-assisted selection may be a useful approach to breed 
beans for leafhopper resistance (Brisco et al. 2014), while a pinto bean germplasm 
resistant to both E. fabae and E. kraemeri was recently released (Porch et al. 2020). The 
bruchid species Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) 
cause significant post-harvest loss to seed quality and germination of beans produced in 
the tropics. Resistance found in tepary bean has been introgressed into Andean common 
bean (Kusolwa and Myers 2011; Kusolwa et al. 2016) and Middle American common 
bean (Beaver et al. 2016) and has been deployed in Africa. 

The current strategy in breeding for resistance to most pathogens and pests of dry 
beans is to pyramid known resistance genes to lengthen the usefulness of the resistance. 
Virulence patterns need to be monitored to identify the most effective combinations of 
resistance genes. Concomitantly, breeders, geneticists and pathologists need to identify 
new sources of resistance in common bean germplasm and from related gene pools. 

3.3.2 Abiotic Stress: T. Porch, C. Urrea, J. Osorno, J. Beaver 

The largest common bean production in the U.S. is in North Dakota, with most of the 
current production in the Northern U.S. and West of the Mississippi, and in Michigan. As 
a result of a rapidly changing climate, even these Northern areas of the U.S. are frequently 
experiencing heat waves with higher temperatures and longer duration during the 
sensitive flowering and pod fill stages, while drought stress in becoming more widespread 
in the West, and excess rainfall or flooding is a recurrent event in U.S. Northern Great 
Plains. Common bean is one of the most drought-sensitive crops among the grain 
legumes (Daryanto et al., 2015), it is highly sensitive to high ambient temperatures 
especially during reproductive development (Gross and Kigel, 1994), and it is intolerant 
to low soil fertility (Singh et al., 2003) and flooding (Soltani et al., 2017; 2018). Increases 
in CO2 levels, from greenhouse gas emissions, have been shown to increase C3 crop 
yields, however most studies show that these benefits can be offset by the detrimental 
effects of warming, drought, and increased competition from weeds and greater disease 
and pest pressure. Warming can also increase the length of the frost-free crop production 
season, however, drought and high temperatures can shorten the crop cycle resulting in 
a contraction of developmental phases, such as seed fill, resulting in reduced yield 
potential and lower seed quality. In addition, breeding for abiotic stress tolerance is 
challenging due to the polygenic nature of these traits and high genotype x environment 
interaction (Beebe et al., 2009). 

Heat 

In temperate regions worldwide, excessive temperatures during reproductive 
development are predicted to occur with increasing frequency and intensity (Teixeira et 
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al., 2013). Heat spells during production are regularly exceeding the common bean ceiling 
temperatures of 30/20°C maximum (daytime/nighttime) in key production regions in 
California, Colorado, Idaho, Nebraska, Oregon, and Washington State and can result in 
significant seed yield reduction and/or in split pod sets in dry beans and snap beans 
(Myers and Baggett, 1999). In the Middle American gene pool, progress has been 
achieved through selection under high temperature lowland tropical sites, such as the 
Pacific Coast of Honduras (Rosas et al., 2000) and Puerto Rico (Roman-Aviles and 
Beaver, 2003) and through introduction of heat tolerance from tropical germplasm. The 
Mesoamerican race (black, small red and navy beans), having evolved at lower altitudes, 
are also inherently more heat tolerant, which may have led to their extensive adoption in 
the tropics.  Medium seeded pinto beans of the Durango race with a prostrate type III 
architecture have been cultivated and selected under semi-arid conditions in the 
highlands of Mexico and have higher levels of drought tolerance as compared to heat 
tolerance. Long-term use of the Winter nursery program in Puerto Rico by U.S. breeding 
programs has likely contributed to increased tropical adaptation (Beaver et al., 2020), 
including tolerance to moderately high nighttime temperatures, in the Durango race, 
however, upright type IIa pinto beans require significant improvement for heat tolerance.  

In areas that have experienced continuous and long-term selection under high 
temperature stress, such as under the high daytime temperatures of the Central Valley of 
California, heat tolerance has been improved (Shonnard and Gepts 1994), such as in the 
Andean kidney cultivars ‘Sacramento’ (Soltani et al., 2019) and ‘CELRK’, as well as in 
other more recent kidney bean germplasm releases selected for heat tolerance under 
high temperature greenhouse conditions (Cornell 105) and in Puerto Rico (PR9920-171 
and TARS-HT1), among others. The Indian subcontinent landrace Indeterminate Jamaica 
Red has been a crucial source of heat tolerance in the highly heat sensitive Andean gene 
pool. Among other U.S. Andean market classes, such as cranberry and yellow, little heat 
tolerance has been found, however, current breeding efforts are directed at increasing 
the diversity of the Andean market classes through incorporation of diverse germplasm, 
using the bulk breeding method, from the characterized Andean Diversity Panel (ADP; 
Cichy et al., 2015a). 

Drought 

The Western U.S. may currently be experiencing an extended and historic period of 
reduced precipitation, or a megadrought, resulting in a major impact on agricultural 
productivity in the Western U.S. and Northern Mexico (Park Williams et al., 2020). 
Worldwide, an estimated 70% of common bean production area is affected by drought 
(Beebe, 2012). Depending on the target environment, improvement efforts focus on 
breeding for productivity under terminal (Frahm et al., 2004) or intermittent (Beebe et al., 
2013) drought stress. Evidence suggests there is significant interaction with the 
environment under drought stress (Ramirez-Vallejo and Kelly, 1998), thus requiring 
selection under target production environments. The diversity of production environments 
in terms of soil types, rainfall patterns, relative humidity, photoperiod, and biotic and 
abiotic constraints makes breeding for broad production areas challenging, however 
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identification of mega-environments for selection can increase breeding efficiency 
(Katuuramu et al., 2020). Introgression and pyramiding of multiple mechanisms of drought 
tolerance has been effective, as well as the use of exotic germplasm and sister species 
(reviewed by Beaver and Osorno, 2009). Due to the complexity of drought and the 
challenges of trait dissection, high quality phenotyping is needed for effective genetic 
mapping, marker assisted selection (MAS), and breeding progress (Trapp et al., 2016; 
Berny Mier y Teran et al. 2019a,b, 2020). Long-term breeding efforts in pinto beans has 
led to the pyramiding of multiple disease resistance, and tolerance to drought, low soil 
fertility and compaction (Brick and Grafton, 1999; Miklas, 2000; Singh, 2007, Brick et al., 
2008). Current breeding and trait dissection efforts pursue specific combinations of 
diverse germplasm, such as the Mesoamerican and Durango races (Frahm et al. 2004; 
Terán and Singh 2002), the use of shuttle breeding between temperate (Nebraska) and 
tropical (Puerto Rico) environments (Porch et al., 2012), and through the use of high-
throughput phenotypic methods (Sankaran et al., 2018; Parker et al. 2020c). 

Flooding  

A study on the impact of natural disasters on agriculture showed that ~60% of crop losses 
are due to flooding, followed by storms (22%) and drought (16%) (FAO, 2015). In some 
bean growing regions (i.e. U.S. northern Great Plains), total rainfall amounts have not 
changed significantly; however, rainfall distribution across the growing season has shown 
dramatic shifts. Heavier rainfall events are more common now than ~20 years ago, 
causing significant flooding in the region. This is exacerbated by heavy clay soils that can 
retain water for long periods of time. Common bean is one of the most sensitive crops to 
flooding, especially at early developmental stages (germination, emergence, and 
establishment). During the growing season of 2016, ~167,000 acres (28% of the total dry 
bean farmlands in North Dakota) were negatively impacted by excess water (Knodel et 
al., 2017). Tile drainage is often used as a solution, but it is expensive. Therefore, the use 
of genetic tolerance may be a more efficient and a less expensive option to cope with 
flooding stress assuming there is genetic variation for tolerance within the bean 
germplasm. Previous research has shown that significant variability for flooding tolerance 
in common bean germplasm (Soltani et al., 2017; 2018). A handful of genotypes have 
been found to be flooding tolerant, with genotypes belonging to the Middle American gene 
pool being more tolerant than those in the Andean gene pool.  However, different 
tolerance mechanisms appear to be present in both gene pools. Overall, white beans 
tend to be more susceptible than colored beans, suggesting that the flavonoids may play 
an important role. Since some of the wild and cultivated Phaseolus species naturally grow 
in regions with high precipitation, there is a need to continue screening and identifying 
new potential sources of tolerance and perhaps different physiological mechanisms of 
flooding tolerance. 

Edaphic constraints 

Deficiency in major and minor soil nutrients are critical constraints to common bean 
production worldwide, especially in regions lacking resources for fertilizer inputs or in 
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organic production systems. Nitrogen and phosphorus (Rao, 2001; Hergert et al., 2015) 
are particularly important macro nutrients in production environments, while alkaline soils 
in North Central U.S. and California/Arizona experience Zn (Hacisalihoglu and Kochian, 
2003) and Fe micronutrient deficiencies (Hergert et al., 2019). The major dry bean 
breeding programs and seed production in the High Plains in the U.S. are on high pH 
soils (Kelly and Cichy, 2013). Low fertility constraints result in poor seedling germination 
and development, reduced biomass, delayed flowering, later maturity, and reduced yield 
(Singh et al., 2003). The effects of low nutrient fertility can be exacerbated by inadequate 
rotations, intensive bean production, and compaction. Multiple deficiencies and toxicities 
can be present in the same production environment, and they can interact with abiotic 
and biotic stress. High levels of N fertilization of kidney beans on sandy soils in MN can 
threaten water quality. Optimum levels of fertilization needed to maintain productivity and 
reduce production costs. Symbiotic nitrogen fixation (SNF) can alleviate soil N 
deficiencies (reviewed by Bliss, 1993) and increase a plants access to water resources, 
however, few breeding programs incorporate this important objective because of its 
complexity (Miklas et al., 2006) and common bean has poor SNF compared to other 
legumes (Herridge et al., 2008). Long-term selection under lower fertility conditions in 
carefully managed nurseries and through use of approaches such as recurrent selection 
have led to increases in tolerance to low fertility both in temperate (Miklas, 2000) and 
tropical (Dorcinvil et al., 2010) U.S. production environments. 

Traits 

Plant architecture, determinacy, days to flowering, and harvest maturity are key 
components in plant response to abiotic stress. The combine-friendly erect architectures 
of most modern cultivars tend to have deeper taproots with better water mining ability; 
however, indeterminate prostrate types tend to be better adapted to intermittent drought 
(Beebe et al., 2013). Root architecture needs to carefully balance the mining of nutrients 
and water while excessive root biomass can result in reduced harvest index and yield. 
The plastic response afforded to indeterminate types can increase yield stability under 
stress (Rao et al., 2016) through avoidance of short periods of stress during reproductive 
development, followed by the production of new flowers and pod set. More stable and 
higher yields in type IIa pinto beans in the U.S. has been major success (Soltani et al., 
2016; Vandemark et al., 2014). Early maturity is an effective method to escape abiotic 
stress through avoiding the increasing stress associated with terminal drought and 
through avoiding heat spells during a prolonged reproductive development (Beebe et al., 
2013). However, a shorter crop cycle has reduced yield potential. The distinct and non-
reversable switch from vegetative to reproductive development, characteristic of some 
early maturing genotypes, is often associated with improved yield under drought and heat 
and should be further pursued. Longer growing seasons in North Dakota and Minnesota, 
due to climate change, could result in higher yielding, later maturity cultivars and/or impact 
where beans are produced. Increasing temperatures result in increases in evaporative 
demand, and in an increased vapor pressure deficit (VPD), thus resulting in faster 
changes in plant water status. Higher VPD with climate change results in reduced 
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stomatal conductance, when plants close their stomata to reduce water loss, which in turn 
leads to reduced transpirational cooling and increased leaf temperatures, and to reduced 
photosynthesis and plant growth. In common bean, the association of VPD with leaf 
temperatures was higher in heat tolerant germplasm, indicating their increased 
transpirational cooling ability (Deva et al., 2020). 

Any combination of abiotic stresses can result in complete yield loss. For example, 
the combination of heat and drought stress in the U.S. Midwest has been blamed for 
recent broad yield reductions in crops (Hatfield et al., 2018). Increasing temperatures and 
drought can also lead to increasing incidence of certain diseases such as common 
bacterial blight, ashy stem blight, and to higher insect pressure, such as the leafhopper 
pest. Disease interaction can also take on different forms with a warming climate as is the 
case with Bean common mosaic necrosis virus. Genotypes absent the I and bc-3 gene 
combination (for example) are susceptible at temperatures > 30 °C (Singh and Schwartz, 
2010). 

Wild P. vulgaris and the related domesticated species, P. acutifolius and P. 
coccineus, still remain a relatively untapped novel source of useful traits for dry and snap 
bean improvement in the area of abiotic stress tolerance. Ongoing efforts to introgress 
abiotic stress tolerance (Barrera et al., 2020) and biotic stress tolerance from tepary bean 
(P. acutifolius) hold great promise. The usefulness of interspecific populations could be 
maximized by screening them against many different biotic and abiotic stresses through 
circulating the interspecific materials among many programs for screening in different 
environments. The introgression of key abiotic stress tolerance from tropical photoperiod 
sensitive dry beans into day neutral lines for evaluation and utilization in temperate 
environments will improve genetic diversity and allow for the pyramiding of stress 
tolerance mechanisms. Introgression of desirable agronomic traits like drought tolerance 
from wild P. vulgaris, require observations of specific phenotypic traits and genotyping of 
the wild accessions for efficient introgression into the domesticated gene pool (Berny Mier 
y Teran et al. 2018, 2020; Cortés and Blair 2018). 

3.3.3. Dietary and cooking needs: K. Cichy, J. Myers 

Compared to other staple foods, such as rice and corn, beans require long cooking times 
to become palatable. This is often a deterrent to greater utilization by consumers. Cooking 
time of beans is influenced by the age of the seed, seed growing and storage conditions, 
and genotype. Freshly harvested beans generally cook 2-4 times faster than beans stored 
for six months (Coelho et al. 2007). Storing beans at high temperature and high humidity 
induces ‘hard-to-cook’ syndrome where cooking times are greatly prolonged (Reyes-
Moreno et al. 1993; Liu and Bourne 1995).  

Wide genetic variability for cooking time has been documented. Under optimal 
growing, storage, and cooking conditions, cooking time of over 200 dry bean lines of the 
P. vulgaris Andean Diversity Panel ranged from 16.5 to 90 min (Cichy et al. 2015a,b). 
Cooking time varies among market classes such that on average white kidney beans 
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cook faster that light and dark red kidney beans. However, there is also significant genetic 
variability for cooking time within a market class. For example, within the dark red kidney 
class, cooking time was evaluated on 14 North American commercial cultivars grown in 
Montcalm, MI, for two seasons: the cooking times ranged from 28 to 63 minutes. This 
within-market-class genetic variability is a challenge for consumers, as beans are not sold 
as single varieties, and mixtures of varieties within a package will have uneven cooking 
times. Consumer demand for beans would likely increase if fast cooking beans were 
commercially available and marketed as such with reliable specific cooking instructions 
were available on packages. Therefore, cooking times should be evaluated during the 
breeding process and/or prior to variety release.  

Some bean market classes are susceptible to seed coat after-darkening. This is 
most prevalent in beans with cream-brown colors, such as pinto and cranberry beans, but 
it is also a problem in pink and light red kidney beans. Unfavorable environmental 
conditions, delayed harvest, and poor storage conditions all may contribute to accelerated 
darkening, thereby making seed appear to be older than they are (Beninger et al. 2005). 
Darkened seed is perceived to be older seed of inferior quality and, therefore, fetch a 
reduced price in the market. Two genes have been found to influence after darkening. 
The J locus controls whether a genotype will darken (Elsadr et al. 2011). The sd allele 
(slow dark), of the P gene on Pv07, influences the rate of darkening; slow darkening is 
recessive to regular darkening (Junk-Knievel et al. 2008; Felicetti, 2011; Islam et al. 
2020). Slow darkening has been deployed in commercial pinto cultivars, including ND-
Palomino (Osorno et al. 2017).  

Research is needed to understand how climate change, including rising CO2 
levels, increased temperatures, and drought will influence the end use quality and 
nutritional composition of beans (e.g., Jones and Boulter 1983). Based on the few studies 
that have been conducted in this area, it appears that composition and quality will be 
impacted differently depending on the specific stress. In soybean, elevated CO2 resulted 
in decreased levels of seed zinc and iron (Myers et al. 2014) and a similar outcome would 
be expected for P. vulgaris. In common bean drought stress reduced seed iron 
concentration, but increased protein, zinc, and phytate levels (Hummel et al., 2018). Hot, 
humid growing conditions can also contribute to increased cooking times (Berry et al., 
2020; Cichy et al., 2019). The potential for climate change to induce prolonged cooking 
times is of great concern as a barrier to bean consumption. The P. vulgaris germplasm 
collection is an important resource to identify germplasm with fast cooking times and 
favorable nutrient composition when grown under adverse climactic conditions 

When green pods are consumed as a vegetable, the pods have high moisture 
content (90% vs. 67% for dry beans when cooked), with green pods containing about 
1.9% protein and 8% carbohydrate, and significant quantities of vitamin C, carotenoids, 
and vitamin K, which dry beans are low in or lack. Cooked snap bean pods also have 
more calcium and zinc on a per unit basis than dry beans.  
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4. Status of plant genetic resources in the NPGS available for reducing genetic 
vulnerabilities 
 

4.1.  Germplasm collection: B. Hellier, L. Wallace 

Holdings 

The NPGS Phaseolus collection is maintained at the Western Regional Plant Introduction 
Station (also known as the Plant Germplasm Introduction and Testing Research Unit) in 
Pullman, WA  and currently has 17, 653 accessions in 57 taxa with 13,175 accessions 
available (75%) and 13,054 accessions backed-up (74%) at the National Laboratory for 
Genetic Resources Preservation (NLGRP), Fort Collins, CO.  Table 6 has the total 
number of accessions, number available and backed-up for the species with the largest 
number of accessions per taxa in the collection: P. vulgaris, P. lunatus, P. coccineus, P. 
acutifolius, P. dumosus, P. leptostachyus, and P. filiformis. 

Gaps 

The geographic distribution of sample origins of the P. vulgaris collection is heavily 
weighted towards the Americas with 39% of the collections originating from Central and 
South America where the highest genetic diversity is found (Table 7). Europe, Asia, 
Africa, and Oceania account for approximately 17%, 20%, 5%, and 0.2%, respectively, of 
the P. vulgaris collection. P. lunatus is also heavily weighted towards the Americas with 
65% of the collection obtained from Central and South America where the highest genetic 
diversity is found. At 12%, Africa is the second largest source of sample origins for P. 
lunatus after the Americas with all other geographic regions being negligible in size. The 
next largest species collection is that of P. coccineus. Sixty-one percent of this collection 
originates from Central America where it has the highest genetic diversity. Europe, Asia, 
and Africa account for 14%, 14%, and 1%, respectively, of the P. coccineus collection. 
Finally, the remaining two domesticated Phaseolus species (P. acutifolius, and P. 
dumosus) have negligible sample origins outside of the Americas. Wild Phaseolus 
species are not examined as they are not found outside of their natural range in the 
Americas. The strong emphasis in all these collections for the center of domestication 
where the highest genetic diversity is found indicates that no significant gaps exist. The 
low number of African accessions in the P. vulgaris collection may indicate a gap 
considering the high level of bean consumption in East Africa and the extended historical 
use of bean landraces there, but the available evidence for genetic diversity in Africa 
shows that it is not a secondary center of domestication for the species but rather reflects 
the diversity already present in Central and South America. 

A wild species of Phaseolus, P. debouckii, has recently been identified and 
characterized (Rendón-Anaya et al. 2017b). This newly identified species is a close sister 
line to P. vulgaris that may possibly represent a primary or secondary gene pool for the 
improvement of the crop. Its absence from the NPGS collection is a gap that could readily 
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be filled through cooperative sharing with the Centro Internacional de Agricultura Tropical  
(Cali, Colombia) collections where examples of this species are held. P. polystachios is 
another wild species with a gap in the NPGS collection. This species is the most northerly 
species of Phaseolus with the potential for unique disease and climate adaptations to the 
North American environment where it is found. P. polystachios is also a tertiary gene pool 
member to P. lunatus with potentially valuable traits for crop improvement. This wild bean 
is only found within the United States of America and it is unlikely that another country 
will sponsor its collection. The states of Florida and Georgia, which appear to be a center 
of diversity for the species based on the distribution of its subspecies, remain largely 
unsampled for this species. Plans are underway to collect P. polystachios from these 
areas. 

Still another gap in the collections is the minimal representation of diversity panels 
utilized in genetics research in the NPGS collections. Several panels are currently utilized 
by researchers, such as the Diversity Panel for Andean Bean Improvement (Cichy et al. 
2015a) or the Middle American Diversity Panel (Moghaddam et al. 2016), but nearly all 

Table 7. Distribution of sample origins among Phaseolus species. Shown are a 
count of accessions followed by the percentage of that collection. A United 
Nations geoscheme was followed in demarcating geographic regions. 

Sample 
Geographic 

Origin 

P. vulgaris 
(incl. var. 

aborigineus) P. lunatus P. coccineus P. acutifolius 
P. 

dumosus 
Northern 
America 

2,278 (17%) 288 (13%) 35 (7%) 198 (41.3%) 0 (0%) 

Central America 3,681 (26.9%) 430 (18.9%) 294 (61.0%) 263 (54.8%) 93 (96%) 

South America 1,654 (12.1%) 1,057 (46.5%) 8 (1.7%) 2 (0.4%) 3 (3%) 

Caribbean 136 (1.0%) 21 (0.9%) 0 (0%) 0 (0%) 0 (0%) 

Europe 2,334 (17.0%) 8 (0.4%) 67 (13.9%) 0 (0%) 0 (0%) 

Asia 2,707 (19.8%) 40 (1.8%) 67 (13.9%) 0 (0%) 1 (1%) 

Africa 639 (4.7%) 283 (12.5%) 6 (1.2%) 7 (1.5%) 0 (0%) 

Oceania 29 (0.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Uncategorized 241 (1.8%) 146 (6.4%) 5 (1%) 10 (2.1%) 0 (0%) 

Totals 13,699 
(100%) 

2,273 
 (100%) 

482 
 (100%) 

480 
(100%) 

97 
 (100%) 
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these contemporary panels are derived from the federally funded Bean Coordinated 
Agricultural Project (BeanCAP) diversity panel. The BeanCAP diversity panel was 
conceived of as an important advance in translational genetics and genomics that would 
facilitate the development of markers for marker assisted selection for all the traits under 
improvement by breeders. These markers would be identified through mapping methods, 
such as Genome Wide Association Studies, for which these panels are ideally suited. 
Currently, only 56% of the BeanCAP diversity panel is represented in the NPGS, and the 
available accessions are ambiguously identified with duplicate names or names that do 
not precisely match the names found in the BeanCAP diversity panel. This should be 
remedied by including all the BeanCAP diversity panel into the NPGS and clearly 
identifying them as such. This may be augmented in the future by adding other diversity 
panels of importance to the research community into the NPGS collections. 

Acquisitions 
The NPGS Phaseolus collection has a long history.  The oldest active accession in the 
collection, PI 90758, was donated in 1930.  Material has been added via donation and 
collection since that time. The last NPGS sponsored explorations outside the U.S. 
targeting Phaseolus were from 2002 – 2004 in Honduras which added 83 accessions of 
wild species and landraces.  From 2004 onward, the material collected outside the U.S. 
has been landraces from Central Asia, Greece, and Ukraine.  New material has also been 
added which was collected in the U.S.  Wild species were collected in Arizona in 2003 
and 2004 and P. polystachios was collected across its range from 2010 to 2018. 
Adding additional germplasm from the primary centers of origin is difficult as Mexico and 
the Central and South American countries are not contracting parties to the International 
Treaty on Plant Genetic Resources.  For the near future, filling gaps in the collection for 
Phaseolus species occurring in the U.S. will the primary goal along with adding important 
cultivars used in research. 
 
Regeneration 
All Phaseolus regenerations are done in two greenhouses on the campus of Washington 
State University and two at the Western Regional Plant Introduction Station Central Ferry 
Farm.   Only greenhouse regeneration is used to prevent BCMV infection spread among 
accessions.  Currently, approximately 400 accessions are regenerated per year with low 
seed quantity or low viability used as the selecting criteria for regeneration.  Seed from 
each accession is direct seeded into pots, watered with drip irrigation and hand harvested.  
Species requiring pollinators for seed production are hand pollinated.  Both IPM and 
conventional pest control, with a zero tolerance for aphids, are used in all the 
greenhouses.  Photoperiod-sensitive accessions can only be grown from the end of 
September to mid-March in part of one of the greenhouses at WSU and both of the 
greenhouses at Central Ferry.   With the additional of the 2 Central Ferry greenhouses 
(first used in 2019), there is adequate regeneration space to maintain the P. vulgaris 
photoperiod-sensitive accessions, but we lack personnel to maintain the P. coccineus 



 
37 Phaseolus CGC: Crop Vulnerability Statement (September 2020) 

photoperiod sensitive accessions. Due to a lack of personnel, the BCMV testing and 
elimination program has been halted.   
 
Distribution 
The Phaseolus collection is distributed as seed to both domestic and international 
requestors.  There continues to be strong interest in the collection.  From 2015 to 2019, 
an average of 285 requests were received and 7,079 seed packets distributed per year.  
Requests are received via the GRIN-Global website.  For all international orders, export 
phytosanitary requirements are obtained from the USDA Animal and Plant Health 
Inspection Service (APHIS).  If a phytosanitary certificate is needed the seed is sent to 
the National Germplasm Resources Lab, Beltsville, MD for APHIS inspection.   The 
European Union and several other countries require certification that seed exported from 
the U.S. be free of Xanthomonas axonopodis pv phaseoli. This limits the distribution of 
the NPGS Phaseolus collection to these countries as the resources, both financial and 
personnel, are lacking for this testing.  
 
4.2. Associated information: L. Wallace 

 

4.2.1. Web site 

GRIN-Global is has become a well-respected standard for public databases of germplasm 
around the world. The International Maize and Wheat Center (CIMMYT) and the 
germplasm collections of several nation states have taken advantage of the free and 
unfettered licensing of the GRIN-Global software to manage and access their own 
collections. Its use by several countries is a testament to its usefulness. Nevertheless, 
upgrades and improvements are needed. In particular, the ability to seamlessly integrate 
genomic data into the passport data for an accession is a need that is becoming more 
acute with the accelerating capacity for high throughput whole genome sequencing. This 
accelerating capacity is making genomic information more relevant as more research is 
done on it, but also increasing expectations by users of GRIN-Global that this relevant 
information will be provided. 

4.2.2. Passport data 

Species is given for the taxonomy portion of passport data on 17,516 (99.2%) of 
accessions. Nevertheless, there are 137 accessions that contain only a genus name 
without a species name. These accessions were generally submitted by the collector 
without a species name. This oversight can be remedied through a taxonomic 
reexamination of materials in the collection. There may be valuable germplasm that has 
yet to be properly categorized and integrated into the collections with its full significance 
registered in the passport data. For the minority of accessions that do not contain origin 
passport details (2.3% of accessions), there may be no remedy at this time, although 
genetic analysis may one day place them correctly in a geographic location. A key 
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passport detail that needs expansion is the seed description and a photograph of the 
seeds. Until genotyping of accessions becomes ubiquitous and provides an identity that 
can be verified, the seed description and a photograph of the seeds provides the best 
method available to verify the identity of the accession outside of a full evaluation in the 
field. Currently, 11,308 (64%) of accession passport details contain a seed description 
and 9,393 (53.2%) contain a photograph of the seeds. This deficit is being remedied with 
each regeneration of seed during which a photograph and seed description are added to 
the accession details. 

4.3. Genomic and genotypic characterization data: P. McClean, P. Gepts  

The NPGS Phaseolus collection has been screened phenotypically for multiple traits over 
the years.  While this is useful when searching for variation among general phenotypes, 
it does not provide sufficient detail when selection based on overall genomic diversity is 
the goal.  At the genomic level, the common-bean core collection was characterized using 
microsatellite markers (McClean et al., 2012), but, while using the state-of-art tools at that 
time, only 58 loci were surveyed. This does not provide a sufficient genomic survey. For 
a more complete analysis, and more importantly to make selection more accurate for 
germplasm with only limited variability, more marker loci need to be sampled.  This has 
changed with the release of multiple reference and draft genome sequences of common 
bean.  It is important to note that the Phaseolus collection was integral in the population 
genomics analysis that utilized the initial reference assembly of P. vulgaris.  

More recently, the same core collection was genotyped with the BARCBean6K_3 
BeadChip (n ~ 5,400 SNPs, see below) (Figure 3; Kuzay et al. 2020). Together with seed 
type (size, shape, and color) and phaseolin seed protein data of the Genetic Resources 
Unit at the Centro Internacional de Agricultura Tropical (Cali, Colombia), these SNP data 
allowed an assessment of the representativity of the core collection, which was one of the 
first core collections established in the world. Kuzay et al. (2020) recommend that a 
separate core collection be established for wild common bean and the domesticated 
common bean collection be supplemented with representation from races Peru and Chile 
from the Andean gene pool and races Jalisco and Guatemala in the Middle American 
gene pool. 

G19833 (W6 36342) was selected to develop a representative reference genome 
for the Andean gene pool (Schmutz et al., 2014). The primary sequence data was 
collected from 454 reads (18.6x genome coverage) and augmented with 454 paired-end 
library read data.  The assembly was based on 21x sequencing coverage.  During the 
early stages of the project, an Illumina Golden Gate assay with 827 SNPs was developed 
(Hyten et al. 2010).  The SNP depth was increased during the genome project through 
resequencing of a family of divergent genotypes and mapping to early scaffold 
assemblies.  The product of that effort was an Illumina Infinium chip (Song et al., 2015) 
used to genotype the segregating populations derived from a Stampede x Red Hawk 
cross.  The resultant genetic map (1,784 genetic loci) was an integral part of the assembly 
process. It contained 7,015 SNP and 261 SSR, along with 25 indel markers that were 
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used to anchor the map to the common bean linkage groups. The assembled contig data 
spanned 472 Mb (of the estimated 587 Mb genome; http://www.kew.org/cvalues/), while 
the assembled scaffold distance was 521 Mb.  The L50 of the contig assembly was ~40 
kb, while the L50 for the scaffolds was ~50 Mb.  The chromosomal scale assembly 
represented 89% of the scaffold distance.  45.4% of the total assembly were repeat 
elements.  The largest class of repeats, the LTR retrotransposons, make up 36.7% of the 
genome size.  Gene modeling was based on RNA-seq data from 11 libraries representing 
multiple anatomical tissues sampled at different development stages.  In addition, ~50k 
transcript assemblies based on available EST sequences in NCBI GenBank were 
developed.  Standard homology-based prediction software packages were employed to 
develop gene models.  These approaches defined 31,638 transcripts derived from 27,197 
gene models. More recently, long-read PacBio sequences were collected for the same 
G19833 genotype. This data was used to develop a more complete genome assembly of 
537.2 MB with scaffold N/L50 of 5/49.7 MB, and contig N/L50 of 73/1.9 MB.  This 
assembly ranks as one of most complete among plant species. 

BAT93 (PI 633451), a small-seeded breeding line developed by CIAT, was chosen 
to develop a draft genome of the Middle American gene pool (Vlasova et al., 2016).  This 
line has multiple resistances to major bean diseases and is a parent of a historical 
mapping population (Nodari et al., 1993; Freyre et al. 1998).  The bulk of the sequencing 
reads were obtained using the 454, SOLiD, and Sanger technologies.  The primary reads 
represented 133x coverage of the bean genome.  The total contig length was 428 kb 
(73% of estimated size; L50=18.1 kb), and the scaffold length was 495 kb (L50=0.43 Mb), 
while the physical distance of the chromosomes was 81% of the scaffold distance.  The 
observation that 35% of the genome consisted of mobile elements was determined using 
multiple repeat predictors.  The Class I LTR retrotransposons accounted for 29% of the 
genome size.  Multiple transcript libraries were developed and sequenced using Illumina 
or 454 technologies.  This was combined with publicly available transcript data for gene 
modeling purposes using standard gene prediction software.  A total of 66,634 transcripts 
were discovered to define 30,491 protein coding gene models. 

In turn, this BAT93 Middle American assembly (Vlasova et al. 2016) was used to 
investigate additional features of the Phaseolus germplasm (Rendón-Anaya et al. 2017a). 
These include 1) shallow (8-20x) sequencing of 29 Phaseolus genomes representing 
most of the species diversity (as defined by Delgado-Salinas et al. 2006), 2) a more 
detailed genomic characterization of five accessions of the intermediate, wild common-
bean gene pool from Ecuador and Northern Peru based on re-sequencing and 
metabolomics, 3) gene flow intra- and inter-species in P. vulgaris and taxa closely related 
to it, and 4) shared and differential selections of genes by the Andean and Middle 
American domestications. Based on these detailed genomic analysis, the presence of 
ancestral sequences for phaseolin, and ecogeographic data, the intermediate gene pool 
was re-classified as P. debouckii to further draw the attention to the distinctness of this 
lineage, which separated from the main P. vulgaris lineage in Middle America some 0.26 
– 0.4 Ma ago (Rendón-Anaya et al. 2017b, Ariani et al. 2018). 
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More recently, another reference assembly of the genotype Pinto UI 111 (PI 
549535) was released.  This genotype is three-way cross consisting of 50% Common 
Pinto, 25% Common Red Mexican (UI 34), and 25% Common Great Northern (UI 1).  
Thus, this genotype contains a genetic background of the three major market classes of 
race Durango (for ecogeographic race classification, see Singh et al. 1991a).  Because 
phylogenetic analyses consistently have shown each P. vulgaris race to be distinct, a 
Durango reference genome assembly will be highly useful for race specific analysis aimed 
at improving the most widely grown ecogeographic race in US bean production fields.  
The reference assembly used the latest PacBio long-read technologies.  The scaffold size 
of the UI 111 genome is 554.9 Mb while the contig size is 553.8 Mb demonstrating the 
value the improved PacBio long-read chemistry and sequencing hardware.  The scaffold 
and contig N50/L50 are 5/51.0 Mb and 23/8.5 Mb, respectively.  RNA-seq reads from 
triplicate samples of leaf, stem, root, and basal root tissue identified 65,104 RNA 
sequences.  From that data, a total of 27,385 loci were identified that are associated with 
36,018 transcripts.  The assembly can be downloaded from https://phytozome-
next.jgi.doe.gov/info/PvulgarisUI111_v1_1 

Reference genome sequences of other domesticated species have been (lima 
bean: G27455, domesticated line of the Middle American gene pool from Colombia) or 
are being developed (tepary bean). The genotype of lima bean chose belongs to the 
‘sieva’ cultivar group, based on its seed size and shape (Mackie 1943, Baudet 1977) The 
lima bean sequence is available online at https://phytozome-
next.jgi.doe.gov/info/Plunatus_V1 .  

 The BARCBean6K_3 BeadChip (Song et al., 2015) was the first tool developed 
directly from the Andean genome project.  It quickly developed into an important research 
tool, especially for assessing genetic factors associated with important agronomic traits 
such as nitrogen fixation (Heilig et al. 2016), disease resistance (Nakedde et al. 2016), 
and pod characteristics in snap beans (Hagerty et al. 2016).  From a germplasm 
evaluation perspective, the chip was instrumental in assessing genomic variation among 
the newly developed Andean Diversity Panel (n~350) that is being used to map important 
agronomic traits using association mapping techniques (Cichy et al., 2015).  Another early 
tool developed from the sequencing and SNP development efforts was a set of 2,687 
indel markers distributed across the genome that can assess not only inter-gene pool 
variation, but also intra-gene pool and even within market class variation (Moghaddam et 
al., 2014).  Markers from this collection were instrumental in locating the WM7.1 and 
WM8.3 white mold tolerance QTL to narrow genomic regions (Mamidi et al. 2016) and 
providing gel-based markers for the Co-1 anthracnose gene (Zuiderveen et al. 2016).   

A richer SNP data set was created using low-pass sequencing (Schröder et al., 
2016) to generate a set of ~150,000 SNPs for the BeanCAP Middle American Diversity 
Panel (MDP) (Moghaddam et al., 2016).  The MDP is a collection (n=~300) of historical 
and modern cultivars representative of US, Canadian, and Latin America breeding 
programs.  This SNP collection was used to define the population structure of the MDP, 
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determine that linkage disequilibrium varies among Middle American races, 
chromosomes and even among various regions within a chromosome, and evaluate the 
genetic architecture of several agronomic traits (Mogghadam et al. 2016).  Other SNP 
sets were developed such as the one reported by Ariani et al. (2016) that discriminates 
wild and cultivated bean genotypes and was used to track the migration history of wild 
common bean (Ariani et al., 2017).  The richest SNP data sets, short of a complete 
genome sequence, are products of resequencing.  Mamidi et al. (2016) applied 
resequencing at the level of ~2x per individual within pools of tolerant and susceptible 
white mold lines.  ~1.5 million SNPs distinguished the two pools, and these SNPs were 
used to map tolerance to very narrow intervals.  This approach, introgression mapping, 
can be applied to any mapping population, and the low-cost of pooled, rather than 
individual, resequencing makes this an attractive approach to rapidly mapping genetic 
effects to narrow intervals. 

The significant genotype efforts are now being leveraged to develop a much larger 
set of SNP marker loci that are specific to each of the two gene pools.  GBS reads 
(n=381,092,199) from multiple libraries (Oladzad et al., 2019) consisting of individuals 
with either MA (n=469) or Andean (n=325) parentage were pooled. Individual MA and 
Andean haplotype maps (HapMap) were developed after final SNP filtering and 
imputation. The Middle American HapMap contained 205,293 SNPs, and the Andean 
HapMap consisted of 260,670 SNPs.  Given the large number of genotypes in each of 
the two HapMaps, researchers can now design experiments to capture phenotypic data 
from all or a subset of the genotypes in the HapMap populations and then perform GWAS 
analyses with a very large SNP dataset to discover important genetic factors controlling 
trait(s) of interest.   Importantly, as additional GBS data is generated for a wider array of 
germplasm, it can be merged with this HapMap data set to create a denser SNP collection 
for those germplasm but also all germplasm that has be characterized at the genomic 
level. 

Whole-genome sequencing, performed on a set of 37 domesticated lines belonging 
to P. vulgaris, P. coccineus, and P. acutifolius, identified some 40 million sequence 
variants and confirmed known structure of the P. vulgaris  germplasm into the two major 
gene pools and domestication centers (Andean vs. Middle America). Several inter-gene 
pool (Andean vs. Middle American) and interspecific introgressions were identified or 
confirmed (Figure 5). In addition, SNP markers located within previously identified QTLs 
provided more precise tagging of anthracnose and angular leaf spot resistance loci 
(Lobaton et al. 2018). 

Recent phylogenetic and domestication discoveries (Delgado-Salinas et al. 2006; 
Repinski et al. 2012; Kwak et al. 2012; McClean et al. 2018; Weller et al. 2019; Parker et 
al. 2020a,b) are pointing to the fact that common bean diversity assessments must be 
made within each gene pool or ecogeographic race at significant depth rather than taking 
a simple pan-species view at a narrow depth of genotyping.  From the perspective of 
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developing evaluation panels, the unique LD structure within the two bean gene pools  
(Kwak and Gepts 2009) and the repeated observation that phenotypes are often 
controlled by different genetic factors in the two pools makes it important to evaluate 
distinct MA and Andean panels.  It is important to remember that, as a species, P. vulgaris 
is unique in that the wild ancestor split into two wild gene pools, the Middle American and 
Andean, ~100k years ago (Gepts et al. 1986; Kwak and Gepts 2009; Mamidi et al. 2013; 
Schmutz et al 2014).  Only recently did these gene pools undergo independent 
domestications about ~7k years ago (Mamidi et al. 2011; Schmutz et al. 2014) in distinct 
locations to form two distinct domesticated clades.  

Figure 5. Inter–gene pool and interspecifc introgressions in common bean lines. 
Representation of inter–gene pool introgressions between 15 Andean genotypes and 23 
Mesoamerican genotypes. The background Andean haplotype (blue), the background 
Mesoamerican haplotype (pink), and the regions of introgression of P. acutifolius (green) and 
P. coccineus (red) haplotypes are represented along the 11 chromosomes. The heat map at 
the left side of each chromosome represents the single nucleotide polymorphism (SNP) 
density for each region. Pericentromeric regions are shown in black boxes (from Lobaton et 
al. 2015). 
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Domestication within each of the clades involved between 748 (Andean) and 1748 
(MA) genes, but only 59 of genes were shared between the two gene pools (Schmutz et 
al. 2014). Rendón-Anaya et al. (2017a) identified 599 gene models associated with 
domestication phenotypes that were shared between the Andean and Middle American 
domestications; 628 gene models were unique to the Middle American domestication. 
When the same gene is involved in the domestication, recent research has shown 
convergent evolution produced unique alleles in each gene pool that were associated 
with the domesticated phenotype (determinacy, PvTFL1y on Pv01: Repinski et al. 2012, 
Kwak et al 2012; seed and flower pigmentation: P locus, Pv07: McClean et al. 2018) or 
different, unlinked  genes altogether (pod shattering, PvPDH1 on Pv03 and MYB26 
candidate gene on Pv05: Parker et al. 2020a,b; Rau et al. 2019. GWAS experiments are 
also revealing that adaptation to environmental stress conditions evolved differentially in 
the two gene pools as exemplified by the discovery that distinct genetic factors are 
associated with the response to flooding in the two gene pools (Soltani et al. 2017, 2018). 
These independent evolutionary paths have also affected marker development and 
deployment, most notably for disease resistance markers where quite often a specific 
marker is only diagnostic in a one gene pool (Miklas et al. 1993, 1996) while being 
monomorphic in the other pool regardless of whether the genotype is resistant or 
susceptible.  This is the result of the strong population structure and distinct linkage 
disequilibrium (LD) arrangements in the two gene pools (Kwak and Gepts 2009). 

4.4. Phenotypic evaluation data: L. Wallace 

The predominant source of phenotypic evaluations of the NPGS Phaseolus collection is 
the regeneration of the germplasm and the associated observations obtained during the 
regeneration process. Sixty-four percent of scored traits are obtained in this manner 
based on method records. These observations are limited in scope to characterizing the 
seed, pod, flower, leaf, plant, and plant photoperiod. The most complete set of 
observations among these traits is that of photoperiod, which is found in 17,253 records 
out of 17,653 in total or 98% of the NPGS Phaseolus collection. The next most complete 
set of observations is that of seed weight, which is found in 15,349 records out of 17,653 
in total or 87% of the collection. Descriptions of the seeds, such as color and pattern, 
cover between 62% to 63% of the collection or 64% if taken together. Observations of 
pod, flower, leaf, and plant are much less common and range from 1% of records to 53% 
of records containing this information. Nevertheless, these publicly available data (via 
GRIN) can be very useful for research as illustrated by the pod shattering data used by 
Parker et al. (2020a) in order to correlate them with molecular data and map genetic 
factors involved in the genetic control of this trait. 

Dedicated trials to assess disease and pest susceptibility only represent about 
23% of scored traits.  The most prevalent observation among these dedicated trials is 
that of white mold susceptibility. There are 556 observations of white mold susceptibility 
among the 17,653 records or about 3% of records contain this disease information. The 
remaining disease and pest observations include trials of anthracnose, bacterial blight, 
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bacterial wilt, bean common mosaic virus, Fusarium, halo blight, Pseudomonas, rust, 
Mexican bean beetle, and potato leaf hopper. Each of these disease or pest susceptibility 
trials contributes observational data to 1% or less of the total records in the collection. An 
even smaller number of records include information from a dedicated trial of nutritional 
properties. Of 17,653 records in total, 113 records (0.6%) contain information on protein, 
antioxidants, and sugars.  

Observations on disease resistance and nutritional quality traits are the most 
pertinent to plant breeders and to the health and safety of the food supply, yet they are 
the least frequent types of observation in the records of the NPGS. Unfortunately, funding 
for the evaluation of NPGS germplasm has remained flat for many years, so progress in 
adding these observations to the records of the NPGS has been slow. 

4.5. Plant genetic resources research associated with NPGS: P. Miklas 

The germplasm evaluation grants awarded by NPGS the past 20 years have been 
extremely useful for identifying novel and useful traits for managing pests, increasing 
climate resilience, and broadening genetic diversity to facilitate genetic gains. Funded 
proposals since 2018 include evaluating wild P. vulgaris for disease resistance and 
adaptive root traits, common bean landraces for resistance to soybean cyst nematodes, 
and wild and domesticated tepary bean for resistance to seed weevils. Other NPGS 
grants since 2010 included evaluations of lima beans, nuña popping beans, snap beans, 
an Andean diversity panel, and the Central and South American core collections for traits 
ranging from adaptation to temperate regions, disease resistance, nutritional 
components, and cooking quality.  NPGS germplasm has also contributed significantly to 
recent diversity panels (Andean, Durango, Tepary, and Yellow bean panels; Cichy et al., 
2015; Hart et al., 2019; Soltani et al., 2016) used for GWAS of economically important 
traits including plant architecture (Soltani et al., 2016), flooding tolerance (Soltani et al., 
2018), anthracnose resistance (Zuiderveen et al., 2016), pod shattering (Parker et al. 
2020a,b), and others.  

The NPGS wild bean collection has supported the resurgence of mining wild crop 
relatives for traits supporting adaptation to extreme climate changes (Berny Mier y Teran 
et al. 2019). Many of the newly discovered traits above will soon be added to the list of 
success stories of evaluation, identification, characterization, and introgression of 
valuable traits from NPGS accessions into improved cultivars. A sampling of these 
success stories for bean include landraces and tepary bean PI lines contributing 
resistance to common bacterial blight (Singh and Miklas, 2015), PI150414 landrace 
contributing quantitative resistance to halo blight (Tock et al., 2017), landraces and P. 
coccineus accessions contributing novel resistance to Sclerotinia white mold (Schwartz 
and Singh, 2013), PI203598 landrace contributing root vigor and associated root rot 
resistance and drought tolerance to race Durango beans in the PNW (Miklas 2000), 
PI181996 contributing a gene for broad resistance to bean rust (Beaver et al., 2020), and 
wild common beans PI319441 and PI 417653 contributing higher yield under drought 
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stress (Berny Mier y 
Teran et al. 2020). 
NPGS funding of 
PCGC proposals 
have been and will 
continue to be a 
critical need for 
evaluating the P. 
vulgaris germplasm 
collection for novel 
traits useful to the 
bean research and 
breeding community. 
   
 
 

4.6. Phaseolus explorations over time: P. Gepts 

Progress in our understanding of the organization of genetic diversity in the genus Phaseolus, in 
general, and the domesticated species, specifically, has been stimulated by extensive 
explorations over several decades. An analysis based on introduction data of wild P. vulgaris (the 
most widespread and abundant wild relative) into the collections of the Genetic Resources Unit 
at CIAT (Cali, Colombia) and GRIN-Global (W6 Plant Introduction Station (Pullman, WA, USA) 
shows that initial introductions were made in the 1950s and the majority of the introductions were 
made in two decades, the 1980s and 1990s (Figure 6). Since then, however, explorations have 
sharply decreased, in spite of the continued genetic erosion documented in section 3.2. 
 
 One can speculate about this decline. First, there may be a sense that most of the germplasm of 
wild P. vulgaris and landraces (let alone other Phaseolus species) has been collected. This is 
contradicted, however, by observations made by Zizumbo-Villarreal et al. (2009) in western 
Mexico and P. Gepts (Sierra de Penjamó, Guanajuato, Mexico), where limited sampling revealed 
additional wild populations that were unreported. Additional examples are provided by the 
Venezuelan Andes and several areas in Peru (e.g, Ayacucho) (D. Debouck, pers. comm.). 
Second, there may be a feeling that there is a need to more thoroughly evaluate and phenotype 
the existing accessions in the germplasm collections before embarking on additional explorations. 
Third, a change in generations is taking place with many of the collectors retiring and in need to 
be replaced by younger colleagues. 

 
5. Priority issues and recommendations:  P. Miklas, P. Gepts 

The Phaseolus community has very much appreciated the dedication of the staff at the 
Western Regional Plant Introduction Station (WRPIS) over the many years since the 
inception of the NPGS Phaseolus collection. The staff has done its utmost to serve the 

Figure 6. Introductions into the CIAT and USDA-ARS-NPGS 
collections of wild Phaseolus vulgaris. 
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community and has facilitated many genetic studies and complemented breeding 
programs, which would not have been possible without its prompt and excellent 
contributions as illustrated by the many examples in this Crop Vulnerability Statement. 
 
We offer these recommendations as a constructive effort to further improve the quality 
and function of the NPGS Phaseolus collection. These recommendations are based on 
the preceding text and our mutual experiences across a broad range of disciplines. 
 

5.1.  Need for adequate and permanent staffing, operating budget, and 
facilities (greenhouses) 

The Phaseolus collection at the WRPIS in Pullman (WA) is one of the largest collections 
of NPGS with some 18,000 accessions. In addition, most of the materials are of tropical 
or subtropical origin, which presents challenges regarding regeneration due to thermo-
photoperiod sensitivity delaying or preventing flowering under summer field growing 
conditions. Adequate maintenance, characterization, and distribution requires permanent 
staffing, an adequate operating budget, and sufficient greenhouses to conduct increases 
during the off-season to address the flowering issue.  
 

5.2.  Updating the Phaseolus collection: e,g., diversity panels, core 
collections, additional explorations 

This statement has mentioned several gaps in the collection that should be filled. These 
include: 

a) Integration of the various diversity panels developed by the Phaseolus community 
(e.g., Middle American and Andean diversity panels, Moghaddam et al. 2016, 
Cichy et al. 2015a). Only some 55% of these panels are currently included in the 
collection. Additional panels have been developed, including for races Durango 
and Mesoamerica (P. McClean) and wild P. vulgaris (Berny Mier y Teran et al. 
2018). Of additional interest is that these panels have been genotyped with SNPs. 

b) The core collection of common bean should be re-evaluated to be more 
representative. Additional materials should be introduced to include Andean gene 
pool materials from the ecogeographic races Jalisco and Guatemala, and Middle 
American materials of races Jalisco and Guatemala. In addition, a wild common-
bean core collection should also be established (Kuzay et al. 2020). 

c) Explorations for additional wild types and additional landraces should resume, as 
they provide additional genetic diversity not present in the elite, domesticated gene 
pools (e.g,. Berny Mier y Teran et al. 2020; A. Delgado-Salinas, pers. comm.; D.G. 
Debouck, pers. comm.). 

d) Continued reciprocal exchanges with the CIAT gene bank should be encouraged, 
especially to enrich the Western Regional Plant Introduction Station from the larger 
Colombian collection (D.G. Debouck, pers. comm.). 
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e) Add specific germplasm addressing specific breeding needs: e.g., fast cooking 
germplasm to the collection, notably Manteca beans collected in marketplaces in 
Angola and yellow beans collected in marketplaces in Haiti (Beaver, J and Porch, 
T. collection trips) (components of the Andean Diversity Panel and Yellow Bean 
Collection) (Cichy et al., 2015a). 

f) The bean host differentials included in the collection for anthracnose, BCMV, halo 
blight, and rust should be updated as warranted and increased to meet demand. 
The differentials for angular leaf spot could be added as well. 

Related to this point, future Phaseolus CGC meeting agendas could include a recurring 
item devoted to “special collections” in hopes to solicit new and updated germplasm of 
novel and useful value to the global research community.  The goal would be to 
encourage researchers to donate useful materials from their personal “working 
collections” after vetting by the Phaseolus CGC before such valuable materials would 
likely be lost upon their retirements. 
 

5.3. Genotyping of the collection and bioinformatic analysis to integrate 
phenotypic and genotypic data 

Several thousands of Phaseolus accessions have been genotyped in several ways, from 
in-depth sequencing to develop reference sequences for different gene pools or 
ecogeographic races, to shallow genotyping-by-sequencing (GBS) or SNP genotyping 
using the BARCBean6K_3 BeadChip. 

a) An effort should be made to systematically genotype or sequence the collection in 
collaboration with the Phaseolus community worldwide using a platform to be 
determined (either by sequencing or SNP chip). This effort could be initiated with 
updated core collections and extended with diversity panels. 

b) The genotypic data should be combined with phenotypic data - via GRIN-Global? 
-  to strengthen the link between the two types of data, in support of conservation 
and breeding programs (Gepts 2006). 

c) Climate change/warming data should be integrated into the planning for 
germplasm exploration, conservation, and utilization: e.g., Barrera-Sánchez et al. 
2020 

5.4. Emphasize the phenotypic evaluation of the collection 

To increase the usefulness of the collection, evaluations should continue with the financial 
support of NPGS to stimulate these evaluations. These results should then be integrated 
promptly into GRIN-Global.  

5.5.  Establish links to microbial germplasm collections 

Access to the pathogen differential strains/races are as important as the host differentials 
in order to maintain a common system for interpreting host - pathogen interactions.  Many 
pathogen collections are maintained by individual researchers without a mandate for 
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preservation or sharing of strains.  Often these pathogen collections are lost upon 
retirements or shifts in research focus. The ATCC maintains isolates for some pathogen 
but it can often be difficult to obtain and resuscitate needed strains relevant to Phaseolus.   

a) Many BCMV and BCMNV strains for the 8 pathogroups are scattered among 
research programs but given that the strains are seed borne they can be 
maintained for long periods in seeds harvested from purposely infected plants.  
Perhaps these infected seeds for specific differential strains can be stored as new 
accessions in a special BCMV collection and supplied to researchers upon request 
given proper permits are supplied.  

b) Perhaps other seed borne pathogens have a similar opportunity for preservation 
as a special germplasm collection.  There are some national labs such as the 
Fusarium Center at Penn State that might be amenable to curating a collection of 
Fusarium strains relevant to Phaseolus.  

c) Relatedly, there is a national Rhizobium collection curated by USDA-ARS that 
should be utilized for establishing a comprehensive collection of Phaseolus 
symbiotic N-fixing bacteria. 

5.6. Further improvements to GRIN-Global 

 The content of the GRIN-Global database should be further improved by integration of 
phenotypic data of the accessions and relevant links to external information (e.g., 
sequence or genotyping data at NCBI, Dryad, etc.) and other germplasm collections (e.g,, 
CIAT, microbial collections, etc.). 
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