# USDA Vaccinium Crop Vulnerability Statement FY 2018 Part 2: Cranberries Small Fruit Crop Germplasm Committee

Kim Hummer, Small Fruit Curator USDA Corvallis, Oregon Kim Lewers, Chair Small Fruit Crop Germplasm Committee, Beltsville, Maryland Nahla Bassil, Geneticist, USDA Corvallis, Oregon Nick Vorsa, Geneticist, Rutgers University, Chatsworth New Jersey Juan Zalapa, Geneticist USDA Madison, Wisconsin Massimo Iorizzo, Geneticist, North Carolina State University, Raleigh Karen Williams, Botanist, USDA Beltsville, Maryland Ioannis Tzanetakis, Plant Virologist, University of Arkansas, Fayetteville





The large cranberry, Vaccinium macrocarpon Aiton, flowers (Wisconsin) and fruit being harvested.





The little leaf cranberry Vaccinium oxycoccos L. flowers and habitat in Hokkaido, Japan.

#### **Executive Summary**

Cranberries, *Vaccinium macrocarpon* Aiton, are native to North America. The U.S. is the world's largest producer with Canada and Chile also producing significant quantities. The top producing states are Wisconsin, Massachusetts, New Jersey, Washington, Oregon, and Maine. In 2016, production was 683.725 tons. The economic value of fresh and processed cranberry production in the U.S. is \$3.55 billion annually and represents > 11,600 jobs. In Canada, the value is \$411 million and includes > 2,700 jobs.

The desired fruit trait attributes of cranberry varieties has progressed over the last 100 years as the end products have changed. Initially high pectin content was a premium attribute for cranberry for sauce, followed by high anthocyanin content for juice drinks. Currently the main product is sweetend-dried-cranberry (SDC) for trail snacks. The fruit attributes for SDCs include homogeneous berry color, an anthocyanin color window, large fruit size (>2g/berry), and higher fruit firmness.

A broad genepool for genetic improvement exists at the national cranberry genebank which is located at the U.S. Department of Agriculture (USDA), Agricultural Research Service, National Clonal Germplasm Repository (NCGR) at Corvallis, Oregon. The genebank collection includes 81 *Vaccinium* taxa. The NCGR genebank contains 333 cranberry/crop wild relatives of cranberry (146 *V. macrocarpon*, 77 *V. oxycoccus*, and 110 *V. vitis- idaea*).

The NCGR genebank includes a primary collection of living plants and their crop wild relatives, grown in containers in protected environments such as screenhouses and greenhouses. Aphids, which vector viruses, are excluded from these houses. Integrated pest management techniques minimize key pests. A core collection representing world species and heritage cultivars has been defined. A secondary backup of the core collection is maintained *in vitro* under refrigeration. A long-term backup core collection of meristems and tissue culture plantlets was placed in cryogenic storage at the USDA ARS Plant and Animal Genetic Resources Preservation, Ft. Collins, Colorado. Wild species diversity is represented by seed lots stored at -18° C. Plants at Corvallis are tested for common viruses, viroids, and phytoplasmas as resources allow but this testing may not completely meet the requirements of some foreign countries. Identity is checked by comparison with written description, review by botanical and horticultural taxonomic experts, and evaluation by molecular markers, such as simple sequence repeat markers. A set of single nucleotide polymorphism (SNP) markers for cultivar identification is under development.

The collection is documented for accession, inventory, voucher images, and morphological and genetic observations on the Germplasm Resources Information Network (GRIN-Global) in Beltsville, Maryland. More than 1,200 *V. macrocarpon* accessions have been distributed to international and domestic requestors during the past 25 years. In 2017, the collection had > 85 *V. macrocarpon* cultivars and 61 clones and 58 seedlots representing the wild species.

Other heritage cultivars and wild accessions unrepresented geographically are being sought to broaden cranberry diversity of the collection. Species are especially needed from northeastern North America including the Eastern US and Northeastern Canadian Maritime Provinces; from the Appalacian Mountains; and from the Midwestern states, such as Minnesota, Michigan, and Wisconsin. During the past several decades, *in situ* conservation strategies have been initiated between the USDA and the U.S. Forest Service, as well as state heritage conservation programs in the Eastern U.S. American crop wild relatives of cranberry are prime candidates for *in situ/ex situ* conservation collaborations because of species distribution in many National Forests, state parks, and heritage sites from the Mid-western to the Eastern U.S.

#### **1. Introduction to the crop**

Cranberry and related wild crop species are classified as members of *Vaccinium* section *Oxycoccus* and section *Vitis-idaea*. Section *Oxycoccus* (which means "sour berry") includes plants that are perennial evergreen trailing woody vines. A second Section *Vitis-idaea*, includes the mountain cranberry, a circumboreal, evergreen, generally low-growing shrub, *V. vitis-idaea* L, and has been commercialized in Europe.

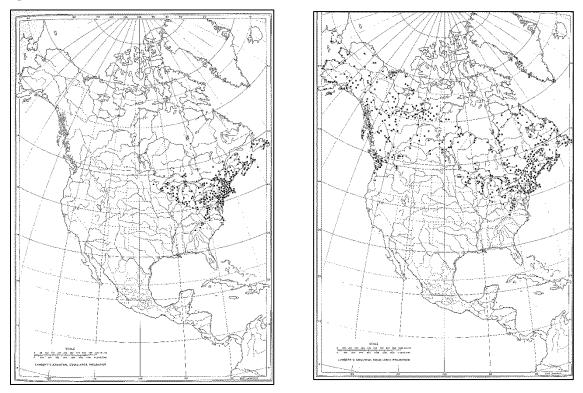
This statement will focus on Section *Oxycoccus* primarially, but will mention Section *Vitis-idaea* species as tertiary crop wild relative (CWR). The cultivated cranberry of commerce was the domestication of the American cranberry, *Vaccinium macrocarpon* Aiton, a native eastern North American species adapted to the temperate climate. Initially berries were collected from wild stands by native peoples; later, cultivation began with cuttings of elite native vines that were propagated in suitable moist 'boggy' soil locations. Genetic improvement was initiated in the 1930's by scientists at the USDA and New Jersey, Massachusetts, and Wisconsin Agricultural Experimient Stations in response to 'false-blossom' phytoplasma disease and production issues (Chandler et al. 1947). What was an exclusive U.S. and Canadian production has now become international with Chile, New Zealand, and Eastern Europe, now producing the cultivated cranberry.

#### **1.1** Botanical features and ecogeographical distribution

Cranberry and blueberry are botanically classified in the genus *Vaccinum* L. which is in the blueberry tribe, *Vaccinieae*, of the subfamily *Vaccinioideae* of the *Ericaceae*, the heath family (Stevens, 1969). The *Vaccinieae* includes those *Vaccinioideae* plants that have inferior ovaries and have more or less fleshy fruits.

*Vaccinium* is polyphyletic as determined by DNA sequence data of the matK gene and nuclear ribosomal internally transcribed spacer (Kron et al, 2002). Thus, a global taxonomic reassessment of the definition of the genus is needed (Vander Kloet and Avery, 2010). Given that the taxonomy is controversial, this genus, as presently described, contains more than 400 species of vines, epiphytes, shrubs or small trees (Galletta and Ballington, 1996). Most of the described species occur in Malaysia, Southeast Asia, Japan, Africa, Europe, and South America (Vander Kloet, 1988), though about 30 species occur in North America. A number of the North American species have highly palatable fruit and several have been domesticated as commercial crops.

Vander Kloet (1988) described 10 North American sections within this genus. Character traits for blueberry and its closer relatives include 5-merous flowers, a generally fused urceolate corolla, and 5-celled (or pseudo10-celled) ovaries. [For more information on blueberry, please see the *Vaccinium* Vulnerability Statement, Part 1.] However, two sections of these North American *Vaccinium* have 4-merous flowers with 4-loculed ovaries. These are the cranberry and


related wild species. Their information is presented here in *Vaccinium* Vulnerability Statement, Part 2.

#### Section Oxycoccus

This section contains two species: the large cranberry, *Vaccinium macrocarpon* Aiton, and the small cranberry, *Vaccinium oxycoccus* L.

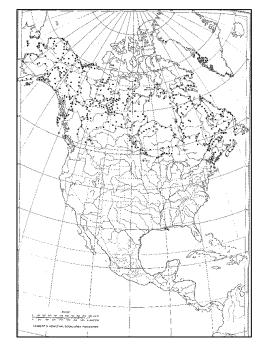
The North American large cranberry is endemic to northeastern US and southestern Canada, while the small cranberry is circumpolar boreal in distribution and occurs broadly across northern North America (Fig. 1.1). The domesticated American cranberry is the species from which commercial cultivars have been selected and will be the focus of this vulnerability statement.

Fig. 1.1.1 Distribution of *Vaccinium macrocarpon* Aiton (left) and *Vaccinium oxycoccus* L. (right) from Vander Kloet (1988).



The large and small cranberries have corolla lobes that strongly reflex at anthesis. *V.* macrocarpon is diploid 2n = 2x = 24 and *V. oxycoccus* members include diploids, tetraploids (2n = 4x = 48), and hexaploids (2n = 6x = 72) (Hummer et al. 2015). Diploid *V. oxycoccos* and *V. macrocarpon* are readily discriminated based on their allozymic variation and tetraploid *V. oxycoccos* appears to have an autopolyploid origin (Mahy et al. 2000). Autotetraploid *V. oxycoccos* may have undergone hybridization with *V. macrocarpon* or the autotetraploid retained the genetic variation present in an ancestral diploid species (Mahy et al. 2000). It has been suggested that *V. macrocarpon* is the more primitive species (Camp, 1944; Vander Kloet, 1988), however, the richer diversity of tetraploid *V. oxycoccos* suggests that an ancestral diploid species

may be extinct. Intermittent co-migrations of these species following the onset of Pleistocene glaciation, and the occurrence of unreduced gametes in complex with parental isolation have been suggested as an evolutionary mechanism for the development of this ploidy series (Vander Kloet, 1988).


The domesticated cranberry of commerce is a trailing, low-growing, woody, evergreen vine. Stolons referred colloquially as runners, growing over 2 m in length, colonize the cranberry bed surface during early establishment. Over time these stolons, juvenile stems, form a dense mat to cover the bog surface, followed by production of a high density if fruiting vertical shoots. The flowers and fruit are borne on these vertical shoots referred to as "uprights." As a long-lived perennial commercial plantings can remain relatively productive for decades. Leaves normally remain on the plant for two seasons before they abscise. Leaves on subsequent shoots and stolons arising from previous years stems provide the photosynthetic source.

The small cranberry has an extensive record of casual use by Native Peoples throughout the north (Turner 1975; Moerman, 2009) and could be a potential secondary genepool for the cranberry of commerce.

#### Section Vitis-idaea

The mountain cranberry, *Vaccinium vitis-idaeus* L. is also known as "lingonberry." The mountain cranberry is circumpolar boreal in distribution and occurs broadly across North America (Fig. 2). The mountain cranberry has campanulate corollas with four small lobes. It is gathered from wild stands throughout Scandanavia, Europe and Russia, and is used commercially for processing into jams and jellies.

Fig. 1.1.2. Distribution of Vaccinium vitis-idaea L from Vander Kloet (1988).



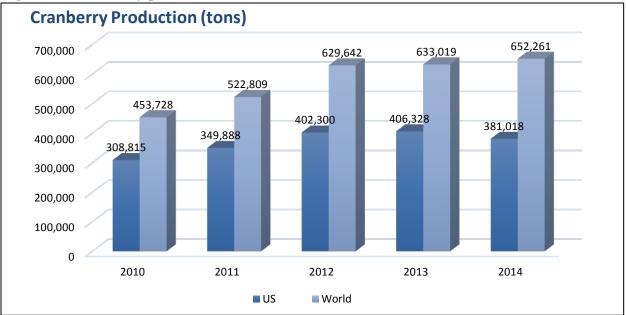
**1.2** Genetic base of crop production

The American cranberry was first developed as a crop of agricultural importance in North America in the late 1800s.

- 1. Cranberries selections of *V. macrocarpon*, bred cultivars, propagated asexually by cuttings, with red skinned berries produced in cultivated bogs or fields.
- 2. Lingonberries selections of *V. vitis-idaea*, primarially gathered from wild native stands in Scandanavia. Some breeding work has been done and some cultivars have been selected and grown under cultivation.

# **1.3** Economics of cranberries in the United States

Berries of native cranberry species are gathered from the wild in many locations throughout the Northern Hemisphere by indigenous peoples. The fruits were consumed fresh or processed into juices, jellies, jams, or frozen.


Cranberries are a moderately high value crop, particularly when sold as fresh fruit. The cranberry crop was worth \$287,322,000 in 2013. The forecast for the 2016 crop is 8,412,700 barrels, up slightly from 2015. New Jersey's total production of 588,000 is close to last year's total. Massachusetts production was 2,070,000; Wisconsin production 5,209,700; Oregon 530,000 and Washington 194,000 barrels.

https://www.nass.usda.gov/Statistics\_by\_State/New\_Jersey/Publications/Cranberry\_Statistics/C RAN%20Aug\_4pg.pdf; http://www.agmrc.org/commodities-products/fruits/cranberries

The USDA Cranberry Marketing Committee invoked its authority to implement a marketing order in 2000 and 2001 under which growers can only sell 85 and 65 percent of their sales history, respectively, to their handlers. USDA hoped that this stabilized prices to growers and, with aggressive generic marketing programs, eventually would allow grower prices to increase. Canada, which produces the bulk of cranberries imported into the U.S., has also instated a market allocation program. Cranberries are remaining in a state of US overproduction relative to demand, considering global commerce.

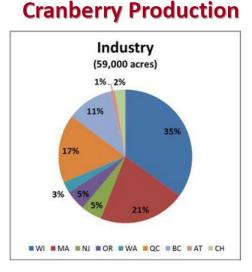
# 1.4. Domestic and international crop production

The total world cranberry production for 2014 was about 652,261 tons according to the UN FAO statistical agricultural database. In 2016, production was 683.725 tons according to the Cranberry Institute (2017). For the past 6 years, the U.S., Canada, and Chile were the largest cranberry producing countries in the world. Other countries that produce reportable amounts of cranberries include Belarus, Azurbaijan. Latvia, Romania, and Macedonia.



# Fig. 1.4.1. Cranberry production (tons). UNFAO, 2017

#### http://www.fao.org/faostat/en/#data/QC accessed 08/08/2017


The total world cranberry production for 2014 was about 652,261 tons according to the UN FAO statistical agricultural database. In 2016, production was 683.725 tons according to the Cranberry Institute (2017). For the past 6 years, the U.S., Canada, and Chile were the largest cranberry producing countries in the world. Other countries that produce reportable amounts of cranberries include Belarus, Azurbaijan. Latvia, Romania, and Macedonia.

UNFAO, 2017 Fig. 1.4.4 Cranberry production <u>http://www.fao.org/faostat/en/#data/QC</u> accessed 08/08/2017

# **Fig.1.4.2. Global Cranberry Production (Cranberry Institute, 2017).**

#### **Economics and demand**

The Cranberry Institute (2017) estimates that the economic value of cranberry production, fresh and processed, in the U.S. is 3.55 billion annually and represents > 11,600 jobs. In Canada, the value is 411 million and includes > 2,700 jobs. The industry encompasses 59,000 acres of cranberry production in the U.S in 5 states and 3 Canadian Provinces. In addition, Chile, in South America, produces about 2% of the total product



#### Fig. 1.4.3. Cranberry production (by acreages) in U.S., Canada, and Chile

| Year | United States | Canada  | Chile  | Total     |
|------|---------------|---------|--------|-----------|
| 2011 | 775,500       | 191,080 | 35,400 | 1,001,980 |
| 2012 | 793,700       | 295,400 | 35,480 | 1,124,580 |
| 2013 | 881,860       | 276,600 | 46,500 | 1,204,960 |
| 2014 | 805,780       | 337,300 | 40,800 | 1,183,880 |
| 2015 | 805,340       | 327,200 | 43,200 | 1,175,740 |
| 2016 | 922,760       | 395,890 | 48,800 | 1,367,450 |

| <u>Stata</u>  |           | Area harvested  |           |                 | Yield per acre      |                 |  |
|---------------|-----------|-----------------|-----------|-----------------|---------------------|-----------------|--|
| State         | 2014      | 2015            | 2016      | 2014            | 2015                | 2016            |  |
|               | (acres)   | (acres)         | (acres)   | (barrels)       | (barrels)           | (barrels)       |  |
| Massachusetts | 12,400    | 13,200          | 12,900    | 164.3           | 177.3               | 174.3           |  |
| New Jersey    | 3,000     | 3,000           | 3,100     | 204.7           | 189.7               | 208.4           |  |
| Oregon        | 2,900     | 2,900           | 2,800     | 162.8           | 191.4               | 140.7           |  |
| Washington    | 1,600     | 1,600           | 1,600     | 97.5            | 123.8               | 109.4           |  |
| Wisconsin     | 20,700    | 20,200          | 21,100    | 239.5           | 237.3               | 288.2           |  |
| United States | 40,600    | 40,900          | 41,500    | 202.9           | 206.7               | 230.0           |  |
| State         | Т         | otal production |           |                 | Utilized production | l               |  |
| State         | 2014      | 2015            | 2016      | 2014            | 2015                | 2016            |  |
|               | (barrels) | (barrels)       | (barrels) | (barrels)       | (barrels)           | (barrels)       |  |
| Massachusetts | 2,070,000 | 2,352,000       | 2,268,000 | 2,037,000       | 2,340,000           | 2,248,000       |  |
| New Jersey    | 652,000   | 595,000         | 653,000   | 614,000         | 569,000             | 646,000         |  |
| Oregon        | 500,000   | 562,000         | 401,000   | 472,000         | 555,000             | 394,000         |  |
| Washington    | 156,000   | 198,000         | 175,400   | 156,000         | 198,000             | 175,000         |  |
| Wisconsin     | 5,022.000 | 4,856.000       | 6,130.000 | 4,957.000       | 4,793.000           | 6,081.00        |  |
| United States | 8,400,000 | 8,563,000       | 9,627,400 | 8,236,000       | 8,455,000           | 9,544,000       |  |
| State         |           | Area harvested  |           | Yield per acre  |                     |                 |  |
| State         | 2014      | 2015            | 2016      | 2014            | 2015                | 2016            |  |
|               | (dollars) | (dollars)       | (dollars) | (1,000 dollars) | (1,000 dollars)     | (1,000 dollars) |  |
| Massachusetts | 37.10     | 32.80           | 30.70     | 75,523          | 76,783              | 68,911          |  |
| New Jersey    | 36.90     | 37.70           | 43.10     | 22,657          | 21,445              | 27,835          |  |
| Oregon        | 23.10     | 26.50           | 26.50     | 10,903          | 14,730              | 10,457          |  |
| Washington    | 44.60     | 44.20           | 44.20     | 6,959           | 8,749               | 7,742           |  |
| Wisconsin     | 27.90     | 29.20           | 29.20     | 138,370         | 140,146             | 177,347         |  |
| United States | 30.90     | 31.00           | 30.60     | 254,412         | 261,853             | 292,292         |  |

**Fig.1.4.4. Cranberry Area Harvested, Yield<sup>z</sup>, Production, Price, and Value - States and United States: 2014-2016** [Net pounds per barrel: 100]

<sup>z</sup>Yield is based on utilized production

#### **1.4.2 International**

In Canada, cranberry production primarily occurs in Quebec, the Maritime Provinces, and British Columbia. Quebec's 2016 cranberry harvest reached almost 138 million tons (275.9 million pounds), a 32% increase compared to the 208 million pounds recorded in 2015. Quebec is now the second largest cranberry production region worldwide, behind Wisconsin.

Of the 276 million pounds, almost 247 million was harvested from the Centre-du-Quebec region, where almost 80% of Quebec's cranberry producers are based. In 2016, Quebec recorded 9,500 acres of cranberry production. The President of the Quebec Association of Cranberry Producers (APCQ), Louis-Michel Larocque, says that cranberry production has been recorded at an average of 29,000 pounds (290 barrels) per acre on Quebec farms. Quebec is the world leader in organic cranberry production. The sector saw a strong 87% increase in 2016 with harvest reaching 40.4 million pounds compared to the 21.6 million pounds recorded the previous year. Organic acreage will see a large increase over the next few years, and the APCQ says it will represents 31% of acreage put into production in 2018.

Chilean production of cranberry is on the increase. In 2016, it increased by 17%. In 2016, Chilean cranberry production increased to > 100,000 tons. Cranberry cultivation in Chile has reached 33,582 acres (13,590 hectares),

#### 2. Urgency and extent of crop vulnerabilities and threats to food security

Cranberry, being a minor crop, lacks appropriate security propagation protocols for maintaining genetic fidelity, and official certification programs are not present. Primary collections at national genebanks consists of living plants, protected in containers in greenhouses or screenhouses, or growing in the field.

Plant material grown outdoors cannot be certified as pathogen negative. Secondary backup collections are maintained *in vitro* under refrigerated temperatures. Long-term backup collections of meristems are placed in cryogenic storage at remote locations to provide decades of security. Species diversity is represented by seed lots stored in -18°C or backed-up in tissue culture. Conservation of clonally propagated material, where genotypes were maintained, is more complicated and expensive than storing seeds, where the objective is to preserve genes. The health status of both forms of storage was of primary importance for plant distribution to meet global plant quarantine regulations.

Cranberry and lingonberry, being specialty crops, have limited world resources available for conservation of these crops and their wild relatives. These limited resources constrain the management of *Vaccinium* genetic resources. Pathogen testing and elimination procedures are critical to maintain pathogen-negative plants to satisfy quarantine requirements.

#### 2.1 Genetic uniformity in the "standing crops" and varietal life spans

Cranberry cultivars were first selected from wild native stands roughly 160 years ago from the main growing regions of New Jersey, Maine, Michigan, Massachusetts, and Wisconsin in the U.S., and from Ontario, Quebec, and the Maritime Provinces in Canada. In the 1930s, a breeding program was initiated (Chandler et al. 1947), using those elite clones and selecting for productive types with desired pest resistance, e.g. blunt-nosed leaf hopper, phenological development, and desirable fruit quality. By 1983, more than 100 cultivars were named and described (Dana, 1983). However, the majority were wild selections and only seven hybrid cultivars resulting

from a breeding and selection(s) were available at that time. Additional unnamed selections, e.g.#35, from the initial breeding program were maintained at Dubay Cranberries, WI, NJAES and MAES.

Active cranberry breeding programs include those at USDA, Rutgers University, University of Wisconsin, and private breeders. These programs have released cultivars that are highly improved for yield, fruit qualities, color intensity, fruit size, ripening season, storage attributes, and keeping quality (Vorsa and Johnson-Cicalese 2012). During the past two decades, growers began the transition from growing older heritage cultivars to those recently developed from breeding programs.

| 2017.              |                                 |      |               |
|--------------------|---------------------------------|------|---------------|
| Cultivar           | Pedigree                        | Year | Origin        |
| Early Black        | Elite from wild                 | 1835 | Massachusetts |
| Howes              | Elite from wild                 | 1843 | Massachusetts |
| McFarlin           | Elite from wild                 | 1874 | Massachusetts |
| Searles            | Elite from wild                 | 1893 | Wisconsin     |
| Potters Favorite   | Elite from wild                 | 1895 | Wisconsin     |
| Prolific           | Elite from wild                 | 1900 | Michigan      |
| Ben Lear           | Native Wisconsin                | 1901 | Wisconsin     |
| Franklin           | Early Black x Howes             | 1930 | Massachusetts |
| Stevens            | McFarlin x Potters Favorite     | 1950 | New Jersey    |
| Beckwith           | McFarlin x Early Black          | 1950 | New Jersey    |
| Wilcox             | Howes x Searles                 | 1950 | New Jersey    |
| Le Munyon          | Elite from wild                 | 1960 | New Jersey    |
| Pilgrim            | McFarlin x Prolific             | 1961 | Massachusetts |
| Bergman            | Early Black x Searles           | 1961 | New Jersey    |
| Pilgrim            | McFarlin x Prolific             | 1961 | New Jersey    |
| Crowley            | McFarlin x Prolific             | 1961 | New Jersey    |
| Gryglesky Hybrid 1 | Rezin x Searles                 | 1982 | Wisconsin     |
| HyRed              | Stevens x Ben Lear seedling #8  | 2003 | Wisconsin     |
| GH1                | McFarlin x Searles              | 2004 | Wisconsin     |
| Crimson Queen      | Stevens x Ben Lear              | 2006 | New Jersey    |
| DeMoranville       | Franklin x Ben Lear             | 2006 | New Jersey    |
| Mullica Queen      | (Howes x Searles) x LeMunyon    | 2006 | New Jersey    |
| Sundance           | Stevens x Ben Lear              | 2011 | Wisconsin     |
| BG                 | Beckwith x GH 1                 | 2012 | Wisconsin     |
| Scarlet Knight     | Stevens x (Franklin x Ben Lear) | 2012 | Wisconsin     |

Fig. 2.2.1. Varietal life spans: Many of the earliest cultivars remain in production as of 2017.

#### **Cranberry selection and breeding**

Cranberry cultivation first started in the 1800s with collections of wild selections of native *Vaccinium macrocarpon*. In 1810, Henry Hall, a Revolutionary War veteran from Dennis, Massachusetts, first cultivated the wild native cranberry (Eck 1990). Vines were selected based on fruit size, color, early ripening, and productivity. These vines were replanted in bogs or swamps in Massachusetts, New Jersey, and Wisconsin, and throughout the native range in the United States and Canada. As cultivated types achieved notoriety, they were given names according to the locality, land owner, or the shape of the fruit, e.g., 'Bell', 'Bugle', or 'Cherry'. 'Early Black', a cultivar selected in 1835, remains in cultivation to date (Vorsa and Johnson-Cicalese 2012).

The producing acreage in the early 1900's of cranberry declined due to 'false-blossom' disease, a phytoplasma vectored by the blunt-nosed leaf-hopper. In response to 'false-blossom' disease in 1929 a cranberry breeding program was begun by the USDA in cooperation with the experiment stations at Massachusetts, New Jersey, and Wisconsin. C.S. Beckwith in New Jersey, H. F. Bergman in Massachusetts, and H. F. Bain in Wisconsin made the first crosses and selections for cranberry improvement through breeding. Seven first breeding and selection cycle generation artificial hybrid cultivars were released from 1950 to 1970, including 'Beckwith', 'Bergman', 'Crowley', 'Franklin', 'Pilgrim', 'Stevens', and 'Wilcox' (Eck 1990). Since then, 16 new proprietary cultivars have been released product from breeding programs at the University of Wisconsin-Madison, Rutgers University, and a private Wisconsin breeder (Valley Corp. http://www.cranberryvine.com/cranberry-varieties)

### 2.2 Threats of genetic erosion *in situ*

According to Natureserve (2017) *Vaccinium macrocarpon* has a secure species designation (G5). This species is widespread as a native plant in northeastern North America (Kartesz 1999), being found in acidic soils and peatlands including bogs, fens, swamps, and interdunal swales (Vander Kloet 1988, Weakley 2000). This species is rare in the portion of its range along the Appalachians and the Southeastern coastal plain (Weakley 2000).

# **2.3** Current and emerging biotic, abiotic, production, dietary, and accessibility threats and needs

Developing new cranberry cultivars requires breeders to be aware of existing and emerging needs throughout the supply chain, from producer to consumer and germplasm as source of critical breeding traits. Many diseases and pests challenge the growth and production of cranberry. Along with the US Department of Agriculture, and universities in the major cranberry production regions, the cranberry industry is a strong supporter of genetic enhancement efforts through research and breeding. Previously, organophosphates were mainly used to control insects in cranberry bogs or fields.

Recently as part of a USDA-NIFA SCRI planning grant entitled "Research and extension initiative for cranberry and blueberry: Current and future needs "A study was conducted to investigate the relative importance of cranberry producers'/processer preferences for fruit and plant quality traits. Industry responses, in general, signaled that the most important trait clusters were fruit quality, and in particular, firmness, fruit size and anthocyanin content. Among diseases, resistance to field fruit rot ranked the most important trait across all states. There were differences across states in importance assigned to other disease resistance traits, insect resistance and tolerance to abiotic stress (Gallardo et al. in preparation).

#### 2.3.1 Biotic (diseases, pests) Viral diseases

Four viruses that infect cranberries have been reported (Appendix Table 3). Martin et al. (2012) describe their vectors and epidemiology whereas McFarlane et al. (2015) provided information on detection methods, regional occurrence, and common primers (Appendix Table 4 and 5). Besided the viruses, a subgroup 16SrIII-V phytoplasma associated with false blossom significantly affects cranberry yield (Lee et al., 2014). The phytoplasma reduces plant growth and yield and has played a significant part in the development of cranberry cultivars (Caruso 2008).

False blossom disease, caused by a phytoplasma, is vectored by leaf hoppers. The disease has been a problem since cranberries first became cultivated in the early 1900s. The disease likely originated in Wisconsin but was transferred on planting material to New Jersey and Massachusetts. The disease had an impact on New Jersey cranberry production. But despite the disease issue, researchers observed differential resistance by cultivar. 'McFarlain' and 'Early Black' were resistant, 'Bennett Jumbo' and 'Vorse's Pride' had moderate infection, and 'Bell', 'Berlin', 'Centennial', 'Howes', 'Metallic Bell', 'Palmeter', 'Prolific', 'Searles', and 'Wales Henry' were susceptible. The resistance is hypothetically achieved due to the preference of the leaf hopper to tissue of the different cultivars.

#### **Fungal and bacterial diseases**

Cranberry plants and fruit are affected by a number of major fungal diseases including root rots caused by *Phytophthora cinnamomi*; diebacks caused by *Phomopsis vaccinia*, *Fusicoccum putrefaciens*, and *Synchronoblastia crypta*; and leaf spots caused by *Pyrenobotrys compacta* and *Protoventuria myrtilli*. Fruit rot is another major proble in all US cranberry growing regions. This disease is caused by a "disease complex" of 10 to 15 pathogenic fungal species, varying by year and location (Stiles and Oudemans 1999). In the survey mentioned above, among 10 diseases resitance triats, resitance to fruit rot was identified as the most important trait. Fungicides are the primary agents to target the fungal diseases, though integrated control strategies, such as improving drainage using tile, stones or installing ditches at the appropriate depth is essential. Sources of fruit rot resistance and QTLs have been identified. http://journal.ashspublications.org/content/140/3/233.abstract

https://link.springer.com/article/10.1007/s11032-017-0639-3

Addition of sand and extra fertilizer can improve growth of stressed plants to stimulate root growth. Source of resistance to fruit rot has been indetified and used to identify quantitative

trait loci (QTLs) associated with fruit rot disease resitance (Daverdin et al. 2017).

# Insect and arthropod pests

Insect pests include the black-headed fireworm *Rhopobota naevana* (Hübner) Cranberry fruitworm (*Acrobasis vaccinii* Riley), Sparganothis fruitworm (*Sparganothis sulfureana* Clemens), Cranberry weevils (*Anthonomus musculus* Say), cutworms, and green and brown span worm. Cranberry beds are monitored using a sweep net and integrated pest management strategies are applied according to the catch. Flooding of the bog, pheromones, mating

disruption, and chemicals that interfere with insect growth stages are applied. In the early 1900s, the blunt-nosed leafhopper was an early challenge for the newly started New Jersey cranberry industry.

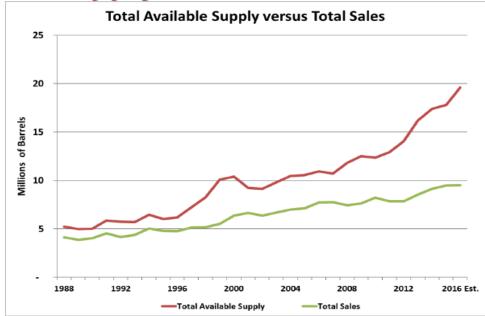
This leafhopper vectored the phytoplasma that caused "false-blossom" disease. Several US Departent of Agriculture entomologists noticed differential feeding by the insect on different cultivars. The first breeding program was established with the goal of developing cultivars with blunt-nosed leafhopper resistance. Based on field observations and feeding preferences, Wilcox and Beckwith (1933) reported that 'Early Black' and 'McFarlin' were not preferred as compared with 'Howes'. The cultivars 'Plum, and 'Shaw's Success' were also most resistant, while Bergman, 'Franklin', 'Pilgrim' and 'Wilcox' were resistant (Dana 1983). To control this disease crosses were made using the resistant cultivars, to obtain resistant offspring. However a false-blossom' resistant variety was not forth coming. It should be noted that as organo-phospahte insecticides are banned or restricted new insect threats have emerged, e.g., toad-bud, myriads, thrips.

In a 2017 survey, differences were observed in the importance of selected insect pest resistance traits. In New Jersey, respondents indicated that the most important pest resistance trait was for blunt-nose leafhoppers, whereas in Wisconsin cranberry fruit worm, and in British Columbia, cranberry tip worm.

#### **2.3.2** Abiotic (environmental extremes, climate change)

Abiotic stresses are major environmental challenges that impact cranberry plant productivity. In the 2017 survey, North American cranberry production regions differed in the ranking of abiotic stress traits (Gallardo et al.). In New Jersey, heat stress was selected as the most important abiotic stress trait, while in Wisconsin and British Columbia fall and spring frost tolerance was most important.

## 2.3.3 Production/demand (inability to meet market and population growth demands)


While cranberries used to be produced only for fresh use and sauces, then a product line of juices were developed. Higher amounts of fruit production encouraged innovative development of products. Cranberry product lines include juice, sweetened-dried-fruit, sauces, fresh fruit, nutraceutical powders, and other miscellaneous forms.

Processed cranberry product sales have been increasing over the past three decades and as of 2017 require > 9 million barrels of fruit. Unfortunately, over those decades there has been an increasing overproduction of fruit (oversupply) compared with the product sales (demand) which has kept price return for growers low.

As mentioned above, a renced breedind trait survey indicated that improving fruit quality is a primary need for cranberry industry. The most important fruit quality trait indetified in this survey were: fruit firmness, fruit size and color. These traits that can affect price premiums the grower receives, can positively drive consumer demand, and improve processing handling, which are all critical factors to the economic viability of the cranberry industry.

#### Fig. 2.3.3.1 Oversupply of cranberries. (Humfeld, 2017)

# **Oversupply of cranberries**



#### **2.3.4** Dietary key nutritional requirements)

The North American cranberry has multiple health benefits linked to phytochemicals in the fruit. Cranberry juice is consumed for the prevention of urinary tract infections (Vorsa et al. 2002). This property is linked with the ability of proanthocyanidins to inhibit adhesion of uropathogenic P-fimbriated *E. coli* bacteria responsible for these infections.

Cranberry flavonoid extract has been shown to ameliorate metabolic syndrome molecular status, a precursor stage to diabetes II, through adiponectin modulation in a rat model (Shabrova et al 2012). Cranberry proanthocyanidins are active against dental caries *Streptococcus mutans* (Dongyeop et al. 2015, Koo et al. 2010). Additional studies have found that cranberry constituents also inhibit adhesion of a major cause of gastric cancer. Emerging evidence suggests that cranberry phytochemicals (particularly proanthocyanidins, quercetin, and ursolic acid) have a mitigating effect on other types of cancers as well and could be a dietary chemoprotective (Wang et al. 2015).

| Nutrient                            | Unit | Value per 100 g |
|-------------------------------------|------|-----------------|
| Proximates                          |      |                 |
| Water                               | g    | 87.32           |
| Energy                              | kcal | 46              |
| Protein                             | g    | 0.46            |
| Total Lipid (fat)                   | g    | 0.13            |
| Carbohydrate, by difference         | g    | 11.97           |
| Fiber, total dietary                | g    | 3.6             |
| Sugars, total                       | g    | 4.27            |
| Minerals                            |      |                 |
| Calcium, Ca<br>Showing 33 nutrients | mg   | 8               |

# Fig. 2.3.4.1 Key Dietary nutritional compounds in cranberry

https://ndb.nal.usda.gov/ndb/foods/show/2191?fgcd=&manu=&lfacet=&format=&count=&max =50&offset=&sort=default&order=asc&qlookup=cranberries&ds=Standard+Reference&qt=&qp =&qa=&qn=&q=&ing=

# 2.3.5 Accessibility (inability to gain access to needed plant genetic resources because of phytosanitary/quarantine issues, inadequate budgets, management capacities or legal restrictions)

Because cranberries are a North American native crop, access to plant genetic resources are direct. The primary species is not threatened or endangered for the most part. Phytosanitary or quarantine regulations are not an issue. Recently released cultivars are under US Plant Patents. As these patents expire the germplasm will become available to the domestic collections. Wild species and heritage cultivars are available and accessible to researchers and the public.

# **3.** Status of plant genetic resources in the NPGS available for reducing genetic vulnerabilities

#### 3.1 Germplasm collections and *in situ* reserves

The US national cranberry genebank collection is kept *ex situ* in Corvallis, Oregon. Back-up seed of species are maintained in freezers in Corvallis and have been sent to NCGRP in Ft. Collins, Colorado, and to the Global Seed Vault in Svalbard, Norway.

*In situ* reserve agreements have been established over the years in 5-year incriments for native cranberry in the Eastern United States working with the US National Forests (US Forest Service) and state heritage conservation programs. This crop would be a good candidate to consider for additional in situ conservation within the United States.

The USDA Agricultural Research Service and the US Forest Service (USFS) have joined forces to conserve CWR native to the US, specifically on lands in the National Forest System. The collaboration was formalized through an agreement between the agencies and further developed in The <u>USFS-ARS Joint Strategic Framework on the Conservation and Use of Native Crop Wild Relatives in the United States</u>, finalized in 2014. The foundation of the strategic framework is its emphasis on complementary conservation, with plants in living populations on National Forest Lands linked with germplasm conserved *ex situ* in genebanks of the NPGS. Two general approaches are established, one focusing on conserving the CWR of one specific crop, and the other on CWR of multiple crops within the boundaries of a specific protected area.

As a pilot study for the first approach to *in situ* conservation in the Framework, the USDA ARS Plant Exchange Office of the National Germplasm Resources Laboratory is collaborating with USFS botanists on the conservation of the wild relatives of cranberry; the large cranberry (*Vaccinium macrocarpon* Aiton) and the small cranberry (*Vaccinium oxycoccos* L.). Representative populations of these species across the species' native ranges in the US are being studied on National Forests. Standard protocols developed by the ARS and USFS are being used to collect leaf tissue for DNA analysis, collect fruit and seed, and prepare herbarium vouchers. Leaf tissue from all populations is sent to the ARS Cranberry Genetics and Genomics Laboratory in Madison, WI, for molecular analysis of inherent genetic variability.

Representative germplasm is maintained as seedlots and plants at the National Clonal Germplasm Repository in Corvallis, Oregon. Herbarium vouchers are maintained by the U.S. National Arboretum in D.C. The goal is to identify those populations that are the highest priority for designation as *In Situ* Genetic Resource Reserves (IGRRs). This designation will be based on location, distance from other populations, sustainability, population size, genetic profile, ease of access, and cultural significance to Native Americans. Long-term management plans will be implemented by the USFS to monitor, manage, and safeguard the security of the populations. In the future, expansion of the study to populations outside the National Forest System is planned to encompass broader genetic diversity of the two American wild cranberry species, *V. macrocarpon* and *V. oxycoccos*.

#### 3.1.1 Holdings

The NCGR-Corvallis holdings include two types of accessions: clonal and species

1) Clonal plants (living collections) that are propagated vegetatively and represent specific genotypes. These include heritage cultivars, newer cultivars, selections that contain specific traits of interest and elite wild accessions.

2) Broader species collections are represented by seed lots or additionally by plant representatives of certain populations.

The available cranberry clonal collections at the NCGR-Corvallis is listed below. The list can be obtained by searching GRIN (GRIN-Global 2017) accession text query entering: "*Vaccinium* cultivar".

| Accession | Inventory<br>Number<br>(CVAC ) | Primary<br>form | Backup<br>form | Name                                    | Origin                       |
|-----------|--------------------------------|-----------------|----------------|-----------------------------------------|------------------------------|
| PI 618039 | 1026.001                       | PL              |                | AA 4 Boone cranberry                    | United States, Wisconsin     |
| PI 554979 | 492.001                        | PL              | тс             | AJ                                      | United States, New Jersey    |
|           |                                |                 |                |                                         |                              |
| PI 618040 | 1027.001                       | PL              | ТС             | AR 2 Boone cranberry                    | United States, Wisconsin     |
| PI 618041 | 1028.001                       | PL              | тс             | Bain Favorite No. 1                     | United States, Wisconsin     |
| PI 618051 | 1038.001                       | PL              | тс             | Bain Favorite No. 2                     | United States, Wisconsin     |
| PI 618042 | 1029.001                       | PL              |                | Bain 2                                  | United States, Wisconsin     |
| PI 618043 | 1030.001                       | PL              |                | Bain 3                                  | United States, Wisconsin     |
| PI 618044 | 1031.001                       | PL              |                | Bain 4                                  | United States, Wisconsin     |
| PI 618045 | 1032.001                       | PL              |                | Bain 5                                  | United States, Wisconsin     |
| PI 618046 | 1033.001                       | PL              |                | Bain 6                                  | United States, Wisconsin     |
| PI 618047 | 1034.001                       | PL              |                | Bain 7                                  | United States, Wisconsin     |
| PI 618048 | 1035.001                       | PL              |                | Bain 8                                  | United States, Wisconsin     |
| PI 618049 | 1036.001                       | PL              |                | Bain 9                                  | United States, Wisconsin     |
| PI 618050 | 1037.001                       | PL              |                | Bain 10                                 | United States, Wisconsin     |
| PI 618052 | 1039.001                       | PL              |                | Bain McFarlin                           | United States, Wisconsin     |
| PI 657266 | 1825.001                       | PL              |                | BE 4 cranberry                          | United States, Washington    |
| PI 554990 | 496.001                        | PL              | TC             | Beckwith                                | United States, Maryland      |
| PI 554983 | 503.001                        | PL              | ТС             | Ben Lear                                | United States, Wisconsin     |
| PI 554973 | 112.002                        | PL              |                | Bennett                                 | United States, Wisconsin     |
| PI 657166 | 1677.002                       | PL              |                | Bennett - Floyd Brown's<br>Bog - Bandon | United States, Oregon        |
| PI 554982 | 662.002                        | PL              | TC             | Bergman                                 | United States, New Jersey    |
| PI 618053 | 1040.001                       | PL              |                | Biron Selection                         | United States, Wisconsin     |
| PI 555008 | 770.001                        | PL              |                | Black Veil                              | United States, Massachusetts |
| PI 555024 | 827.001                        | PL              | TC             | Bugle: Mashpee type                     | United States, Massachusetts |
| PI 555023 | 826.001                        | PL              |                | Bugle: Wareham type                     | United States, Massachusetts |
| PI 555009 | 771.001                        | PL              | ТС             | Centennial                              | United States, Massachusetts |
| PI 554999 | 745.001                        | PL              | ТС             | Centerville                             | United States, Massachusetts |
| PI 555000 | 746.001                        | PL              | тс             | Champion                                | United States, Massachusetts |

# Fig. 3.1.1.1. Cranberry<sup>z</sup> collections held at the NCGR-Corvallis (GRIN-Global, 2017)

| PI 554980 | 493.001  | PL | тс | Cropper                 | United States, New Jersey    |
|-----------|----------|----|----|-------------------------|------------------------------|
| PI 554976 | 111.001  | PL | TC | Crowley                 | United States, Washington    |
|           |          |    |    | Crowley - Floyd Brown - |                              |
| PI 657167 | 1678.002 | PL |    | Bandon                  | United States, Oregon        |
|           |          |    |    | Crowley - Ray Gardner - |                              |
| PI 657170 | 1681.002 | PL |    | Bandon                  | United States, Oregon        |
| PI 618054 | 1041.001 | PL |    | Drever                  | United States, Wisconsin     |
| PI 554986 | 741.002  | PL | TC | Early Black             | United States, Massachusetts |
| PI 555001 | 747.002  | PL |    | Foxboro Howes           | United States, Massachusetts |
| PI 554998 | 743.001  | PL | TC | Franklin                | United States, New Jersey    |
| PI 555010 | 772.001  | PL | TC | Garwood Bell            | United States, New Jersey    |
| PI 555011 | 773.001  | PL | TC | Gebhardt Beauty         | United States, Wisconsin     |
| PI 638768 | 1447.001 | PL |    | Grygleski 2             | United States, Wisconsin     |
| PI 618055 | 1042.001 | PL |    | Habelman 2              | United States, Wisconsin     |
| PI 554995 | 708.002  | PL |    | Hamilton                | United States, Massachusetts |
| PI 618056 | 1043.001 | PL |    | Hollison                | United States, Massachusetts |
| PI 614076 | 1296.001 | PL | TC | Howes                   | United States, Massachusetts |
| PI 554996 | 709.001  | PL | тс | Langlois Form           | United States, Oregon        |
|           | 499.001  |    |    |                         |                              |
| PI 554985 | тс       | ТС | TC | Le Munyon               | United States, Wisconsin     |
| PI 618057 | 1044.002 | PL |    | Matthews                | United States, Massachusetts |
| PI 614075 | 1295.001 | PL | TC | McFarlin                | United States, Massachusetts |
|           |          |    |    | McFarlin - Frasier -    |                              |
| PI 657165 | 1676.002 | PL |    | Bandon                  | United States, Oregon        |
| PI 618058 | 1045.001 | PL |    | Middleboro              | United States, Massachusetts |
| PI 554978 | 491.001  | PL | TC | No. 35 (cranberry)      | United States, New Jersey    |
| PI 666674 | 1758.001 | PL |    | No. 41 cranberry        | United States, Oregon        |
| PI 554987 | 505.001  | PL |    | Olson's Honkers         | United States, Oregon        |
|           |          |    |    |                         |                              |
|           |          |    |    | Olson's Honkers - Ray   |                              |
| PI 657169 | 1680.002 | PL |    | Gardner - Bandon        | United States, Oregon        |
| PI 555003 | 749.001  | PL | TC | Paradise Meadow         | United States, Massachusetts |
| PI 555005 | 751.001  | PL | ТС | Perry Red               | United States, Massachusetts |
| PI 614077 | 1297.001 | PL | ТС | Pilgrim                 | United States, New Jersey    |
|           |          |    |    | Pilgrim - Floyd Brown - |                              |
| PI 657168 | 1679.002 | PL | ТС | Bandon                  | United States, Oregon        |
| PI 555004 | 750.001  | PL | ТС | Pride                   | United States, Massachusetts |
| PI 554993 | 666.001  | PL | ТС | Prolific                | United States, Michigan      |
| PI 618060 | 1047.001 | PL |    | Rezin McFarlin          | United States, Wisconsin     |
| PI 618061 | 1048.001 | PL |    | Rezin NatTCe            | United States, Wisconsin     |

| PI 555002              | 748.002              | PL       | тс | Round Howes                                                               | United States, Massachusetts                           |
|------------------------|----------------------|----------|----|---------------------------------------------------------------------------|--------------------------------------------------------|
| PI 555013              | 775.002              | PL       | TC | Searles                                                                   | United States, Wisconsin                               |
| PI 555013              | 775.003              | PL       |    | Searles                                                                   | United States, Wisconsin                               |
| PI 555014              | 776.001              | PL       | TC | Shaw's Success                                                            | United States, Massachusetts                           |
| PI 554972              | 110.001              | PL       | TC | Stankovich                                                                | United States, Oregon                                  |
| PI 618059              | 1046.001             | PL       |    | Stanley                                                                   | United States, Massachusetts                           |
| PI 614078              | 1298.001             | PL       | TC | Stevens                                                                   | United States, Maryland                                |
| PI 657171<br>PI 657162 | 1682.002<br>1673.002 | PL<br>PL |    | Stevens - Bob<br>Donaldson - Floras Lake<br>Stevens - Manicke -<br>Bandon | United States, Oregon<br>United States, Oregon         |
| PI 657163              | 1674.002             | PL       |    | Stevens - Northside -<br>Bandon                                           | United States, Oregon                                  |
| PI 657164              | 1675.002             | PL       |    | Stevens - Southside -<br>Bandon                                           | United States, Oregon                                  |
| PI 657172              | 1683.002             | PL       |    | Stevens - Stu Peterson -<br>George Bushman                                | United States, Oregon                                  |
| PI 657161              | 1672.002             | PL       |    | Stevens - Yellow RTCer                                                    | United States, Oregon                                  |
| PI 555006              | 752.001              | PL       | TC | Wales Henry                                                               | United States, Massachusetts                           |
| PI 555007              | 753.001              | PL       | TC | Whiting Randall                                                           | United States, Massachusetts                           |
| PI 614079              | 1299.001             | PL       | тс | Wilcox                                                                    | United States, Maryland                                |
| PI 618064<br>PI 618063 | 1051.001<br>1050.001 | PL<br>PL |    | WSU 108 cranberry<br>WSU 77 cranberry                                     | United States, Washington<br>United States, Washington |
|                        |                      |          |    | Yellow Bell Open                                                          |                                                        |
| PI 555028              | 832.001              | PL       | ТС | Pollinated                                                                | United States, Maine                                   |
| PI 618025              | 929.001              | PL       | тс | V. macrocarpon Badger<br>Pit CA                                           | United States, California                              |
| PI 618171              | 1317.001             | PL       |    | V. macrocarpon Blue<br>Hill 2                                             | United States, Maine                                   |
| PI 618028              | 933.001              | PL       |    | V. macrocarpon East pit<br>CA                                             | United States, California                              |
| PI 618026              | 931.001              | PL       |    | V. macrocarpon<br>Lonesome Lake CA                                        | United States, California                              |

| PI 554977 | 250.001  | PL | V. macrocarpon Maine          | United States, Maine            |
|-----------|----------|----|-------------------------------|---------------------------------|
| PI 555025 | 829.001  | PL | V. macrocarpon Maine          | United States, Maine            |
| PI 555026 | 830.001  | PL | V. macrocarpon Maine          | United States, Maine            |
| PI 555027 | 831.001  | PL | V. macrocarpon Maine          | United States, Maine            |
| PI 555029 | 833.001  | PL | V. macrocarpon Maine          | United States, Maine            |
| PI 555017 | 803.001  | PL | V. macrocarpon Maine<br>70-28 | Canada, Nova Scotia             |
| PI 618009 | 896.001  | PL | V. macrocarpon<br>Maryland    | United States, Maryland         |
| PI 613184 | 913.001  | PL | V. macrocarpon MD<br>Allen 11 | United States, Maryland         |
| PI 613185 | 914.001  | PL | V. macrocarpon MD<br>Allen 12 | United States, Maryland         |
| PI 618018 | 916.001  | PL | V. macrocarpon MD<br>Allen 14 | United States, Maryland         |
| PI 638754 | 911.001  | PL | V. macrocarpon MD<br>Allen 9  | United States, Maryland         |
| PI 554989 | 660.001  | PL | V. macrocarpon<br>Minnesota   | United States, Minnesota        |
| PI 555020 | 823.001  | PL | V. macrocarpon NH#2           | United States, New<br>Hampshire |
| PI 555021 | 824.001  | PL | V. macrocarpon NH#3           | United States, New<br>Hampshire |
| PI 555022 | 825.001  | PL | V. macrocarpon NH#3           | United States, New<br>Hampshire |
| PI 618231 | 1384.001 | PL | V. macrocarpon Nova<br>Scotia | Canada, Nova Scotia             |
| PI 618231 | 1384.002 | PL | V. macrocarpon Nova<br>Scotia | Canada, Nova Scotia             |
| PI 618086 | 1085.001 | PL | V. macrocarpon NY             | United States, New York         |
| PI 618030 | 935.001  | PL | V. macrocarpon Oregon         | United States, Oregon           |
| PI 554974 | 113.001  | PL | V. macrocarpon Poole          | United States, Oregon           |

| 1 1       | i        |    | 1  | 1                       |                              |
|-----------|----------|----|----|-------------------------|------------------------------|
|           |          |    |    | V. macrocarpon          |                              |
| PI 555031 | 876.001  | PL |    | Tennessee               | United States, Tennessee     |
|           |          |    |    | V. macrocarpon          |                              |
| PI 618014 | 906.001  | PL |    | Tennessee Site TC       | United States, Tennessee     |
|           |          |    |    | V. macrocarpon          |                              |
| PI 555015 | 777.001  | PL |    | Thunder Lake 3          | United States, Wisconsin     |
|           |          |    |    | V. macrocarpon          |                              |
| PI 555016 | 778.001  | PL |    | Thunder Lake 4          | United States, Wisconsin     |
|           |          |    |    | V. macrocarpon Virginia |                              |
| PI 613183 | 905.001  | PL |    | Site III                | United States, Virginia      |
|           |          |    |    |                         |                              |
| PI 555019 | 809.001  | PL |    | V. macrocarpon VT 1     | United States, Vermont       |
|           |          |    |    | V. macrocarpon WV       |                              |
| PI 618020 | 918.001  | PL |    | Allen 16                | United States, West Virginia |
|           |          |    |    | V. macrocarpon WV       |                              |
| PI 618022 | 920.001  | PL |    | Allen 18                | United States, West Virginia |
|           |          |    |    | V. macrocarpon WV       |                              |
| PI 618015 | 909.001  | PL | тс | Allen 7                 | United States, West Virginia |
|           |          |    |    | V. marcocarpon H-PA-    |                              |
| PI 657241 | 1792.001 | PL |    | 2007-04                 | United States, Pennsylvania  |

<sup>z</sup>Cultivars with the same name are being compared through molecular techniques to confirm identity. Duplicate accessions will be eliminated once determination is completed.

# **3.1.2** Genetic coverage and gaps

#### **Clonal holdings**

The collection presently has about 85 cultivars. A recent study was conducted using 12 simple sequence repeats (SSRs) to examine clonal purity and cultivar relatedness of 271 plants from 77 accessions representing 66 named cultivars in the NCGR collection (Schlautman et al. in preparation). Intra-cultivar variants (sub-clones) existed in the germplasm collection, a problem that likely stems from past misidentification or mixed clones of the accessions acquired by the NCGR. Consensus and true-to-type genotypes were found for many cultivars and wild selections by comparisons of genotypes in this study with previous ones, and a pedigree analysis. However, others were apparently absent suggesting that the collection can still be improved by sampling genotypes in cranberry bogs from commercial marshes across the growing regions or from breeders.

# Fig. 3.1.2.1 Heritage cultivars to fill gaps in NCGR Collection

| AJ     | Bain McFarlin    | Champion         | Habelman2 | Prolific    |
|--------|------------------|------------------|-----------|-------------|
| Bain 2 | Bennett          | Crowley          | Hollison  | Round Howes |
| Bain 4 | Bugle: Wareham T | y <b>D</b> rever | No. 41    | Searles     |
| Bain 5 | Centennial       | FoxboroHowes     | Perry Red | Stanley     |
| Bain 9 | Centerville      | Gebhardt Beauty  | Pride     |             |

#### **Domestic Collection Gaps.**

Other heritage cultivars from the U.S. and wild accessions unrepresented geographically in the collection are being sought to broaden representation of cranberry diversity in the collection. Species representatives are especially needed from northeastern North America including the Eastern coast of the United States and Northeastern Canadian Maritime Provinces; from the Appalacian Mountains in the south; and from the northern Midwestern states, such as Minnesota, Michigan, and Wisconsin. Recent collections from USDA scientists in the mid-west will be donated to the NCGR *ex situ* collection.

During the past several decades, *in situ* conservation strategies have been established between the US Department of Agriculture and sister agencies, such as the U.S. Forest Service, as well as state heritage conservation programs in the Eastern U.S. American crop wild relatives of cranberry are prime candidates for *in situ/ex situ* conservation collaborations because of species distribution in many National Forests, state parks, and heritage sites from the Midwestern to the Eastern U.S.

#### List of designated primary, secondary, and tertiary crop wild relatives

**Primary genetic relative:** Taxa that cross readily with the crop (or can be predicted to do so based on their taxonomic or phylogenetic relationships), yielding (or being expected to yield) fertile hybrids with good chromosome pairing, making gene transfer through hybridization simple.

**Secondary genetic relative:** Taxa that will successfully cross with the crop (or can be predicted to do so based on their taxonomic or phylogenetic relationships), but yield (or would be expected to yield) partially or mostly sterile hybrids with poor chromosome pairing, making gene transfer through hybridization difficult.

**Tertiary genetic relative:** Taxa that can be crossed with the crop (or can be predicted to do so based on their taxonomic or phylogenetic relationships), but hybrids are (or are expected to be) lethal or completely sterile. Special breeding techniques, some yet to be developed, are required for gene transfer.

# **Crop: CRANBERRY**

(compiled by Dr. Blanca León)

## **Crop taxon:**

 <u>Vaccinium macrocarpon Aiton</u> – cranberry Crop wild relatives:
 Primary

 <u>Vaccinium macrocarpon Aiton</u> [wild types]
 Secondary

1. Vaccinium oxycoccos L.

# **Crop: LINGONBERRY**

(compiled by Dr. Blanca León)

# Crop taxon:

1. Vaccinium vitis-idaea L. – lingonberry

**Crop wild relatives:** 

# Primary

1. <u>Vaccinium vitis-idaea L.</u> [wild types]

# Secondary

- 1. Vaccinium myrtillus L.
- 2. Vaccinium uliginosum L.

# 3.1.3 Acquisitions

#### Plants

From any country plant material must be obtained from the USDA Animal and Plant Health Inspection Service. *Vaccinium* plants and plant parts from Canada are prohibited and a permit is required. Permits can be obtained through application the USDA APHIS PPQ website <a href="http://www.aphis.usda.gov/plant\_health/permits/">http://www.aphis.usda.gov/plant\_health/permits/</a>

APHIS works with state departments of agricultural, such as the Oregon Department of Agriculture (ODA) to provide inspection of plant material for the *Vaccinium* genebank in Corvallis.

#### Seeds

Fruit from foreign countries is prohibited. Seed must be extracted from the fruit prior to importation from foreign sources.

To extract seed, fruit are soaked in solution of 5% pectinase overnight. The solution is put in a blender with the blades masked. The solution and the fruit pulp are decanted. Floating seeds are eliminated. The seeds that sink are air dried on paper towels and then dried in desiccators to about 6% moisture. Seeds can be placed in coin envelopes and placed in aluminized plastic envelopes and stored at -20°C. Seeds are germinated and plant representatives are chosen from vigorous seedlings.

# 3.1.4 Maintenance

#### **Clonal storage**

The pathogen-tested primary *Vaccinium* collection is maintained under screen. Two containers are preserved for each genotype. The highbush cultivars are alternated with prostrate-growing accessions on benches in the screenhouse to maximize useage of space (Fig. 1).

We apply a pumice topdress (collar) to finished and intermediate sized plant material. The goal is to create a sterile (dry and inorganic) surface that will prevent weed and moss growth. This also can prevent or reduce fungus gnats.

We dibble, or bury our fertilizer under the topdress as part of this goal. This topdress combined with our stable, bark-free medium creates a growing system that greatly reduces water usage. This in turn reduces nutrient leaching, salt build-up, and moisture stress.

The abrupt change from fine growing medium to coarse pumice breaks the hydrolic conductivity between these materials and prevents capillary movement of water to the pot surface. Water in the medium is lost primarily through transpiration via stomata and not evaporation from the pot surface.

This topdress is a third component to the physical structure of our growing system. The other two are: Pot height (distance of crown to perched water table) and percent free air space. Tall pots with good aeration give healthy growth. The pumice collar reduces maintenance effort (sanitation and watering) and conserves resources (nutrients). The drawback of this system is that it can be difficult to evaluate moisture levels and develop a watering schedule. Scratching the surface to see moisture and pot weight are effective in gauging watering frequency. Overall, for us, the pumice topdress reduces significantly reduces cultural risk to containerized plant material.

The pumice collar is ideal for vigorous or pot bound material that needs frequent water. If you put a pumice collar on weak or poorly rooted material that needs a well aerated medium, you can get saturated conditions and loss of material. In this case, it is better to allow the plants to get established and apply the topdress later. I'm recommending a pumice collar for healthy, typical material. For xeric or high montane material that needs superior drainage, or has a prolonged dry dormancy, a pumice collar should only be used over medium with superior porosity and only after establishment or not at all. For slow growing montane material this is a compromise between control of fungus gnats and root aeration.

# Seed storage

After collection and extraction, seeds are put into manila seed envelops and then into plasticaluminum envelops for storage in -20°C chest freezers in Corvallis. With quantities above 2,000, roughly half are shipped to USDA Ft. Collins, Colorado, and about one quarter are shipped to Svalbard Global Seed Vault in Norway for long term remote conservation.

# 3.1.5 Distributions and outreach

Cranberries are distributed as stem cuttings, tissue cultures, pollen, flowers, leaves, or seed. For most plant requests, cuttings are available for distribution during the dormant season from November through January. Cold stored tissue cultured plants in plastic packets (depending on availability) or seeds can be distributed any time of year.

# **3.2** Associated information

# **3.2.1** Genebank and/or crop-specific web site(s)

NCGR website: http://www.ars.usda.gov/main/site\_main.htm?modecode=53-58-15-00

# Passport information Genotypic characterization data Phenotypic evaluation data

Cranberry information is searchable on the new GRIN-Global database. http://www.grin-global.org/index.php/Main\_Page

### 3.3 Plant genetic resource research associated with the NPGS

Project sponsored by UDSA NIFA: Specialty Crop Research Initiative blueberry genomics

# **3.3.1** Future Goals and emphases

- Obtain wild cranberries with pest resistance
- Obtain primary, secondary, tertiary crop wild relatives with high fruit qualities
- Obtain heritage cultivars from state agricultural experiment stations or elsewhere in the US
- Obtain wild cranberry relatives from Asia to Northern America
- Analysis of fruit content variability within the genus

# **3.3.2** Significant accomplishments

- Significant plant collections from the US in multiple collecting trips over 30 years.
- Significant plant collections of blueberry crop wild relatives were obtained from Canada, Japan, China, Russia, and Vietnam (Hummer et al. 2016)
- Conservation of heritage cranberries dating back to the 1800s.
- Tissue culture core cultivars and species clones in the NCGR-Corvallis and at the NCGRP Ft. Collins.
- Wild cranberry populations in National Forests across the US are under evaluation for potential as in situ genetic reserves (USDA-ARS, USFS, Univ. of Wisconsin).

# 3.4 Curatorial, managerial and research capacities and tools

# 3.4.1 Staffing for *Vaccinium* management

0.1 FTE Cat. 4 support scientist Curator
0.1 FTE Cat. 4 plant pathologist/ testing and clean up
0.1 FTE Cat. 4 geneticist for identity confirmation/diversity assessment
0.1 FTE Program Assistant (GS-7)
0.1 FTE Bio Sci Res Tech (GS 9) – greenhouse manager
0.1 FTE Bio Sci Res Tech (GS 9) – tissue culture/cryogenic technician
0.1 FTE Bio Sci Res Tech (GS 9) – distribution
0.5 FTE Bio aid (GS 5) – propagation
0.1 FTE time slip labor- for plant management

1.3 FTE total USDA labor for cranberry efforts

| 3.4.2 Facilities and equipment                                             | ft <sup>2</sup> | $m^2$                     |  |  |  |
|----------------------------------------------------------------------------|-----------------|---------------------------|--|--|--|
| 1 Screenhouses for <i>Vaccinium</i> only                                   | 6,000           | 700                       |  |  |  |
| 1 polycarbonate growing area                                               | 6,000           | 700                       |  |  |  |
| (below only 1/10 for blueberry)                                            | ,               |                           |  |  |  |
| Main Office and Laboratory Space                                           | 9,830           | 929                       |  |  |  |
| Four Greenhouses                                                           | 10,229          | 937                       |  |  |  |
| Headhouse                                                                  | 6,500           | 614                       |  |  |  |
| One Shadehouse                                                             | 1,720           | 164                       |  |  |  |
| Boiler Room                                                                | 400             | 38                        |  |  |  |
| Shop Work Area                                                             | 1,704           | 161                       |  |  |  |
| Two Storage Sheds                                                          | 3,960           | 374                       |  |  |  |
| Two Walk-in coolers                                                        | 360             | 36                        |  |  |  |
| North Farm Building                                                        | 2,220           | 210                       |  |  |  |
| Additional facilities and support                                          |                 |                           |  |  |  |
| Fuel Tanks                                                                 |                 |                           |  |  |  |
| Above ground diesel                                                        | 2 @ 500 g       |                           |  |  |  |
| Above ground gasoline                                                      | 1 @ 500 g       | gal                       |  |  |  |
| 4 wells                                                                    |                 |                           |  |  |  |
| Land                                                                       |                 |                           |  |  |  |
| Buildings and Grounds                                                      | 5 acres (2      | 2.23 hectares)            |  |  |  |
| (25 year lease from OSU starting January 1, 1978)                          |                 |                           |  |  |  |
| (Lease has been signed for additional 25 year exten                        | sion 2004 thr   | ough 2029)                |  |  |  |
| Planted (other non-strawberry crops)                                       |                 |                           |  |  |  |
| 20 acres (8.09 hectares) at 3                                              | 3447 Peoria F   | Road, Corvallis, OR 97333 |  |  |  |
| (Agreement with OSU Department                                             | of Horticultur  | re on Lewis Brown Farm)   |  |  |  |
| Additional Plantings 42 acres (17 hectares) USDA-ARS owner                 |                 |                           |  |  |  |
| 33707 S.E. Peoria Road, Corvallis, OR 97333                                |                 |                           |  |  |  |
| Staffing for Facilities Management                                         |                 |                           |  |  |  |
| Location Engineering Technician GS-9 available for consultation and advice |                 |                           |  |  |  |
| Unit Maintenance Technician WG-5 provides 0.15                             | FTE of facilit  | ties maintenance.         |  |  |  |
| Janitor WG-1, 0.15 FTE                                                     |                 |                           |  |  |  |
|                                                                            |                 |                           |  |  |  |

### Equipment

Tissue culture laboratory (media prep, culturing, growth room, cryogenic option) Molecular marker laboratory (molecular marker determination) Pathogen testing laboratory (bio assays, ELISA, PCR, rtPCR) Plant propagation equipment (mistbed, propagation houses, quarantine facility) Field propagation

#### **3.5** Fiscal and operational resources Federal funding to support federal *Vaccinium* germplasm management at NCGR-Corvallis: FY 2016 – \$153,000.

About \$10,000 per annum to fund small fruit germplasm evaluation proposals from USDA Crop Germplasm Committee evaluation grants. In addition plant exploration/exchange funding can be applied for through the USDA annual granting process.

- 4. Other goals for genetic resource capacities (germplasm collections, in situ reserves, specialized genetic/genomic stocks, associated information, research and managerial capacities and tools, and industry/technical specialists/organizations) (2 pp. maximum)
  - *In situ* cranberry conservation effort between USDA ARS and Forest Service beginning 2013 for 5 years. Plans are to extend and expand this effort
  - Verify each of the genotypes in the collection using molecular markers. (SSR, SNP, sequencing).
  - Establish tissue culture collection of complete cultivar collection.
  - Store seed samples of *Vaccinium* species both at NCGRP- Ft. Collins and at Svalbard Global Seed Vault.

## **5.** Prospects and future developments

- Develop molecular markers, SNPs, or sequencing to distinguish cultivars at the subclonal level.
- Screen cranberry germplasm for resistance for the regionally important key insects.
- Screen cranberry germplasm for resistance for the regionally important key diseases.
- Improve efficiency of containerized collections of cranberry plants for long-term conservation.
- Regenerate seedlots of accessions that were wild collected for more availability to requestors.
- Continue and expand on-going *in situ* efforts for cranberry conservation.

#### 6. References

- Camp WH (1944). A preliminary treatment of the biosystematy of Oxycoccus. Bul. Torrey Bot. Club 71: 426-437
- Caruso F (2008). Disease management 2008. pp 1-6 in in: MM Sylvia and N. Guerin (eds.) Cranberry chart book-management guide for Massachusetts. UMass Cranberry Sta. Ext. Publ. East Whareham, Massachusetts
- Chandler FB, Wilcox RB, Bain HF, Bergman HF, Dermen, H (1947). Cranberry breeding investigation of the U.S. Dept. of Agriculture. Cranberries 12: 6-9 (May); 12:6-10 (June)
- Cranberry institute (2017). Crop statistics about cranberries. <u>http://www.cranberryinstitute.org/about\_cran/Cropstatistics\_about.html</u> accessed 09/03/2017
- Dana MN (1983). Cranberry cultivar list. Fruit Var. J. 37:88-95.
- Daverdin G, Johnson-Cicalese J, Zalapa J, Vorsa N, Polashock J. (2017). Identification and mapping of fruit rot resistance QTL in American cranberry using GBS. Mole. Breed. 37:38.
- Dongyeop K, Huang G, Liu Y, Wang Y, Singh AP, Vorsa N, Koo H (2015). Cranberry flavonoids modulate cariogenic properties of mixed-species biofilm through exopolysaccharides-matrix disruption. PLoS ONE 10(12): e0145844. doi:10.1371/journal.pone.0145844
- Eck P (1990). The American cranberry. Rutgers, The State University. New Brunswick. 420 pp.
- Gallardo RK, Zhang Q, Klingthong P, Polashock J, Rodriguez-Soana C, Vorsa N, Harbut R, Atucha A, Zalapa J. and Iorizzo M (2018) Breeding Trait Priorities of the cranberry Industry in the United States and Canada. In preparation.
- Galletta, GJ, Ballington, JR (1996). Blueberries, cranberries and lingonberries. Chapter 1, pp. 1 109 in: Janick J and Moore JN, (eds.) Fruit Breeding, Vol. II, Vine and Small Fruit Crops. John Wiley and Sons, Inc. New York.
- GRIN-Global. Germplasm Resources Information Network-Global (2017). Taxonomy for the National Plant Germplasm System. <u>https://npgsweb.ars-grin.gov/gringlobal/taxonomybrowse.aspx</u>
- Hagerup O (1940). Studies on the significance of polyploidy. IV. *Oxycoccus* Hereditas 26:399-410.
- Humfeld R (2017). Cranberry overview. The Cranberry Institute. Presentation notes from North Carolina meeting in May 2017.
- Hummer KE, Bassil NV, Rodríguez Armenta HP, Olmstead JW (2015). *Vaccinium* species ploidy assessment. Acta Hortic. 1101:199-204. DOI 10.17660/ActaHortic.2015.1101.30
- Hummer KE, Oliphant J, Kien NV, and Hoai, T (2016). Wild Vietnamese relatives of blueberry. Acta Horticulturae. In press.
- Kartesz JT (1999). A synonymized checklist and atlas with biological attributes for the vascular flora of the United States, Canada, and Greenland. First edition. In: Kartesz, J.T., and C.A. Meacham. Synthesis of the North American Flora, Version 1.0. North Carolina Botanical Garden, Chapel Hill, N.C.
- Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, Singh AP, Vorsa N (2010). Influence of cranberry proanthocyanidins on formation of biofilms by *Streptococcus mutans* on saliva-coated apatitic surface and on dental caries development *in vivo*. Caries Res 44:116–126.

- Kron KA, Powell AE, and Luteyn JL (2002). Phylogenetic relationships within the blueberry tribe (*Vaccinieae, Ericaceae*) based on sequence data from *mat K* and nuclear ribosomal ITS regions, with comments on the placement of *Satyria*. Amer. J. Bot. 89: 327-336
- Lee I, Polashock JJ, Bottner-Parker KD, Bagadia PG, Rodriguez-Saona C, Zhao Y, Davis RE (2014). New subgroup 16SrIII-V phytoplasmas associated with false-blossom diseased cranberry (*Vaccinium macrocarpon*) plants and with known and potential insect vectors in New Jersey. European Journal of Plant Pathology. 139:393-400
- MacFarlane S, McGavin W, and Tzanetakis IE (2015). Virus-testing by PCR and RT-PCR amplification in berry fruit. Methods Molec. Biol. Pl. Path. 1302: 227-248
- Mahy G, Bruederle LP, Connors B, Van Hofwegen M, Vorsa N (2000). Allozymes revealed genetic autopolyploidy and high genetic diversity in tetraploid cranberry, *Vaccinium oxycoccos* (Ericaceae). Amer. J. Bot.87:1882-1889
- Martin RR, Polashock JJ, and Tzanetakis IE (2012). New and emerging viruses of blueberry and cranberry. Viruses 4: 2831-2852
- Moerman DE (2009). Native American medicinal plants: an ethnobotanical dictionary. Timber Press. Portland, Oreon. p. 205
- NatureServe (2017). NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. from NatureServe <u>http://explorer.natureserve.org</u>
- Shabrova EV, Tarnopolsky O, Singh AP, Plutzky J, Vorsa N, Quadro L (2011). Insights into the Molecular Mechanisms of the anti-atherogenic actions of flavonoids in normal and obese mice. PLoS ONE 6(10): e24634. doi:10.1371/journal.pone.0024634.
- Stevens PF (1969). Taxonomoic studies in the Ericaceae. Ph D. thesis. University of Edinburg, Scotland
- Stiles CM, Oudemans PV (1999) Distribution of cranberry fruit-rotting fungi in New Jersey and evidence for nonspecific host resistance. Phytopathology 89:218–225
- Turner NJ (1975). Food plants of British Columbia Indians Part 1-Coastal peoples. Brigish Columbia Provincial Museum Handbood 34. Victoria, B.C. 264 pp
- Tuner NJ (1978). Food plants of British Columbia Indians Part 2- Interior peoples. Brigish Columbia Provincial Museum Handbood 34. Victoria, B.C. 259 pp
- UNFAO (2017) UN Food and Agricultural Statistical Database for agricultural production. http://www.fao.org/faostat/en/#data/QC accessed 08/08/2017
- Vander Kloet SP (1988). The genus Vaccinium in North America
- Vander Kloet SP, Avery TS (2010) Vaccinium on the edge. Edinburgh J. Bot. 67(1):7-24
- Vorsa N, Polashock J, Howell A, Cunningham D, Roderick R. (2002). Evaluation of fruit chemistry in cranberry germplasm: potential for breeding varieties with enhanced health constituents. Acta Hortic. 574: 215-219
- Vorsa N, Johnson-Cicalese J (2012). American cranberry. Chapter 6, pp.191-223 In: Badenes, ML and DH Byrne Fruit Breeding Springer New York
- Wang Y, Han A, Chen E, Singh RK, Chichester CO, Moore RG, Singh AP, Vorsa N (2015). The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int. J. Oncology 46: 1924-1934
- Weakley AS (2000). Flora of the Carolinas and Virginia: working draft of May 15, 2000. Unpublished draft, The Nature Conservancy, Southern Resource Office.

Wilcox RB, Beckwith CS (1933). A factor in the varietal resistance of cranberries to the false blossom disease. J. Agric. Res. 47:583-590

#### 7. Appendices

Appendix Table 1. Cranberry crop wild relative species and synonyms listed in GRIN, October 2017.

- 1. Vaccinium erythrocarpum Michx.
- 2. Vaccinium erythrocarpum subsp. erythrocarpum
- 3. Vaccinium erythrocarpum subsp. japonicum (Miq.) Vander Kloet
- 4. Vaccinium hybr.
- 5. <u>Vaccinium macrocarpon Aiton</u>
- 6. <u>Vaccinium oxycoccos L.</u>
- 7. Vaccinium vitis-idaea L.
- 8. <u>Vaccinium vitis-idaea subsp. minus (Lodd. et al.) Hulten (=Vaccinium vitis-idaea L.)</u>
- 9. Vaccinium vitis-idaea var. minus Lodd. et al. (=Vaccinium vitis-idaea L.)

Appendix Table 2. Cranberry and crop wild relaties species held at the NCGR-Corvallis (Grin-Global October 2017)

| Species name                                | No.<br>accessions |
|---------------------------------------------|-------------------|
| Vaccinium erythrocarpum                     | 5                 |
| Vaccinium erythrocarpum<br>subsp. japonicum | 3                 |
| Vaccinium hybr.                             | 74                |
| Vaccinium macrocarpon                       | 113               |
| Vaccinium oxycoccos                         | 74                |
| Vaccinium vitis-idaea                       | 109               |

# **Appendix Table 3. Viruses that infect Cranberries**

| Virus name            | Acronym | Genus      | Transmission          |  |  |
|-----------------------|---------|------------|-----------------------|--|--|
| Blueberry red         |         |            |                       |  |  |
| ringspot virus        | BRRV    | Soymovirus | ?                     |  |  |
| Blueberry scorch      |         |            |                       |  |  |
| virus                 | BIScV   | Carlavirus | aphids/non-persistent |  |  |
| Blueberry shock virus | BlShV   | llarvirus  | pollen/seed ◊         |  |  |
| Tobacco streak virus  | TSV     | llarvirus  | pollen/seed □◊        |  |  |

◊ Also transmitted by pollen feeding arthropods

Pollen and seed transmitted

# Appendix Table 4. Regional occurrence of viruses in cranberry

| Virus name             | Regional occurrence |         |        |        |      |           |
|------------------------|---------------------|---------|--------|--------|------|-----------|
|                        | North               | South   | Europe | Africa | Asia | Australia |
|                        | America             | America |        |        |      | New       |
|                        |                     |         |        |        |      | Zealand   |
| Blueberry red ringspot |                     |         |        |        |      |           |
| virus                  | Yes                 | N/A     | Yes    | N/A    | Yes  | Yes       |
| Blueberry scorch virus | Yes                 | N/A     | Yes    | N/A    | N/A  | N/A       |
| Blueberry shock virus  | Yes                 | N/A     | Yes?   | N/A    | N/A  | N/A       |
| Tobacco streak virus   | Yes                 | Yes     | Yes    | Yes    | Yes  | Yes       |

# Appendix Table 5. Virus detection methods and frequently used primer sequences.

| Virus                        | Detection<br>methods            | Primer sequences                        |  |  |
|------------------------------|---------------------------------|-----------------------------------------|--|--|
| Blueberry red ringspot virus | ELISA/PCR                       | (RRSV3) ATCAGTCCCAGAAGAAAAGAAGTA        |  |  |
|                              |                                 | (RRSV4) TCCGAAAAATAGATAGTGTCAGC 549bp   |  |  |
| Blueberry scorch virus       | ELISA,                          | (F) GAAAGAAGCACCGGCTCAATC               |  |  |
|                              | RT-PCR                          | (R) GGAGATCTTGGCCATTTGCTC 380bp         |  |  |
| Blueberry shock virus        | ELISA;<br>RT- PCR<br>degenerate | (Ilar1F5) GCNGGWTGYGGDAARWCNAC          |  |  |
|                              | ilar primers                    | (Ilar2R9) GGTTGRTTRTGHGGRAAYTT ~ 380bp  |  |  |
| Tobacco streak virus         | ELISA,<br>RT-PCR                | (TSV CP F) ACGAGTATTAAGTGGATGAATTCT     |  |  |
|                              |                                 | (TSV CP R) ACTTACAATACGTCGAGGTGTG 872bp |  |  |