USDA SOYBEAN GERMPLASM COLLECTION REPORT -- 2014 February 2015

In 2014, we distributed 29,268 seed lots from 14,973 accessions from the USDA Soybean Germplasm Collection in response to 689 requests from 422 individuals. This is the thirteenth year in a row and 17 of the past 20 years in which we have distributed more seed lots than total accessions in the Collection. There were 613 domestic requests (89% of the total) with a total of 26,613 seed packets representing 14,672 accessions sent to 355 researchers from 46 states. Domestically, public scientists made 440 requests, scientists with commercial companies made 118 requests, and individuals made 55 requests. There were 2,655 seed packets of 2,099 accessions in 77 orders sent to 67 scientists in 25 countries. Thirty-two requests were made for 2,056 seed packets of 927 perennial *Glycine* accessions. We also sent backup seeds of 600 accessions to the National Center for Genetic Resources Preservation (NCGRP) and 2,026 accessions for storage in the Svalbard Arctic Seed Vault.

We planted 3,012 accessions of *G. max* and 75 *G. soja* for seed replacement in the Collection. These were planted at three locations: 2,065 *G. max* and 14 *G. soja* accessions at Urbana, 836 *G. max* and 61 *G. soja* accessions at Stoneville, and 111 *G. max* in Costa Rica. Seeds of 2 bulk *G. soja* samples of 100 plants collected by Erick Sachs, Univ. of Illinois; Elena Dzyubenko, Larissa Bagmet, and Andrey Sabitov N.I. Vavilov All-Russian Scientific Research in the Khabarovsk and Primorski regions of the Russian Federation were grown and seeds from these plants will be pure lined in 2015. Eleven plant introductions were donated by Dr. Yusran, Tadulako University, Central Sulawesi, Indonesia in 2011 and 2 donated by Tran Thanh Binh, Center Research Legume and Development, Hanoi, Vietnam in 2008 were pure lined.

Seed notes are being taken on accessions grown in Urbana, Stoneville and Rosemont 2011, 2012, and 2013 evaluations.

Some of the *G. soja* accessions evaluated at Urbana in 1998 and 1999 had maturity dates or seed sizes that varied widely between years. Plants from older sources and 1999 sources were compared and in at least 43 cases, plants grown from 1999 seed were different than earlier sources. The seed from the 1998 evaluation years appears to be correct. To be safe, seed orders are not being filled from any *G. soja* seed lot grown in the Urbana 1999 evaluation because there are few phenotypic differences among *G. soja* so there could be more seed lots that are incorrect. There are older backup sources of all the *G. soja* accessions which will be planted to obtain fresh, correct seed for distribution. Seed requests will be surveyed and everyone who potentially received mislabeled seeds will be notified.

The genotyping of 19,652 G. max and G. soja accessions with 52,041 SNPs was completed by Perry Cregan and Qijian Song in Beltsville, MD. Those data are now available through SoyBase (http://www.soybase.org/dlpages/index.php) and have already been used in several manuscripts. Using these data 6198 G. max and 499 G. soja accessions were found to be at least 99.9% similar in SNP markers to at least one other accession and some were 100% identical (1908 G. max comparison groups with 72 accessions in the largest group, 138 G. soja groups with 54 accession in the largest group). Using qualitative, phenotypic data to remove accessions that were obviously different we narrowed this list down to 3413 G. max (1151 groups with 42 accessions in the largest group) and 414 G. soja accessions (137 groups with 46 accessions in the largest group). Starting with the largest groups of accessions with similar phenotype and SNP markers in maturity groups of 000 - IV, 1276 G. max and 214 G. soja accessions were planted in comparison plots in Urbana in 2013. The second half was compared in 2014. However, due to rain the G. max plots were not planted until June 17 and many plants froze before maturity so these will need to be replanted in 2015. Nevertheless, some accessions being compared are definitely different. Accessions that were 100% alike for SNP markers were found to have up to 8 qualitative differences and accessions with great than 99.99% SNP similarity had as many as 11 qualitative differences. We will be rechecking some of these accessions to make sure that the DNA samples were correctly labeled. These SNP data will be very useful in defining genetic differences among accessions and we are exploring ways that we can use these data in managing the Collection. It is not likely that we will eliminate any

accessions from the Collection based on SNP similarity because the concurrence of this many SNP markers still cannot define two accessions as completely identical.

One germplasm release, 5 genetic types, and 9 private varieties with expired Plant Variety Protection certificates (PVPC) were also added to the Collection. There were 302 new accessions donated from a Vietnamese soybean germplasm collection project funded by the United Soybean Board in collaboration with the Agricultural Genetics Institute (AGI) and the National Center for Soybean Biotechnology, University of Missouri. These will be grown in Stoneville in 2015.

Alyson Steines, the technician who worked with new introductions, tropical accessions, wild soybeans, and managed our greenhouse, resigned in August 2012. Because there had been a hiring freeze in place there was a large backlog of vacancies to be filled. Our request to fill her position was approved in the spring of 2013. An initial set of candidates was forwarded to us in October, but the preselected list had only one candidates with field or greenhouse experience. We decided not to select among those candidates and our search has not yet been reopened. We are hoping that this will happen this summer.

NPGS will be adding transgenic cultivars to our collections when the patents on these cultivars expire. General policies and procedures on how to include these lines into collections and prevent transgenes from contaminating other accessions are in the final stages of approval. The Soybean Collection will have to determine the specific procedures that we will follow.

For some time there has been a discussion within the soybean research community about the need for a soybean genetic stocks collection to preserve the many lines that are being developed by various mutagens or with transgenic procedures. The initial collection could range from a few hundred to tens of thousands of accessions depending on the criteria for inclusion. For this purpose, we received an increase in our budget in 2014. This funding was not nearly sufficient for a new collection but we need to begin the process and set priorities for what we can do at a time when the resources for the current USDA Soybean Germplasm Collection are not adequate for the task.

In cooperation with Marcelo Oliveira of Embrapa, all of the soybean accessions in maturity groups IX and X are being evaluated in Sinop in northern Brazil. This test was planted in October of 2014 but because of severe drought and restrictions on irrigation the test was lost. It was replanted again in February but lack of rain is again threatening the test.

NPGS plans to implement the switch from GRIN to GRIN Global in 2015. The public version of GRIN-Global Release 1.9.4 is now available at <u>http://npgsweb.ars-grin.gov/gringlobal</u>.

Jim Heiholtz and Patti Witcher, Dept. of Agricultural Sciences, Texas A&M University-Commerce, continued to screen MG V accessions for tolerance to Redbanded Stink Bug. Louis O'Donoughue et. al. characterized 119 accessions for the allelic status at the GmPhyA3 gene (E3 locus) (Tardivel, A., H. Sonah, F. Belzile, L.S. Donoughue. 2014. Rapid Identification of Alleles at the Soybean Maturity Gene E3 using Genotyping by Sequencing and a Haplotype-Based Approach. Plant Genome. 7:1-9. doi: 10.3835/plantgenome2013.10.0034)

Not counting registration articles in Crop Science and Journal of Plant Registrations there are 93,021 accession linked to 380 citations in GRIN. 19,893 unique accessions are covered by at least one citation not including USDA Tech. Bulletins or Crop Science registration articles. These citations are listed with an accession's information, and a complete list of all of the publications referencing accessions for soybeans with number of accessions cited can be found on the general crop information page.

Esther Peregrine and Randall Nelson USDA Soybean Germplasm Collection 1101 W. Peabody Drive, Urbana, Illinois 61801 As of December 31, 2013, the Collection contained the following entries:

Annual subcollection	Entries	Perennial species	Entries
Introduced G. max	17151	G. arenaria	5
G. soja	1179	G. argyrea	14
Germplasm releases	196	G. canescens	123
Modern cultivars	546	G. clandestina	90
Old cultivars	208	G. curvata	9
Private cultivars	585	G. cyrtoloba	48
All isolines	599	G. dolichocarpa	13
Pigment mutants	47	G. falcata	29
Genetic types	197	G. latifolia	44
Annual subtotal	20708	G. latrobeana	6
		G. microphylla	33
		G. peratosa	7
		G. pescadrensis	68
		G. pindanica	4
		G. rubiginosa	38
		G. stenophita	27
		G. syndetika	6
		G. tabacina	142
		G. tomentella	299
		Perennial subtotal	1005
C - 11 4 ² 4 - 4 - 1 2	1700		

USDA Soybean Germplasm Collection Inventory

Collection total 21689

2100/

Number of accessions screened for which data is entered in GRIN:

Perennial Glycine		
Type Descriptor		Accessions screened
	Core subset	115
	Image	957
CHEMICAL	Bowman-Birk Inhibitor	560
CYTOLOGIC	Chromosome number	774
DISEASE	Sclerotinia stem rot	777
DISEASE	Sudden death syndrome	754
MORPHOLOGY	Adventitious roots	319
MORPHOLOGY	Leaflet arrangement	291
MORPHOLOGY	Upper pubescence type	290
MORPHOLOGY	Upper terminal leaflet length	265
MORPHOLOGY	Upper terminal leaflet shape	292
MORPHOLOGY	Upper terminal leaflet width	293
NEMATODE	Soybean cyst nematode, race 3	490

Glycine max	Description		Glycine max	
Туре	Descriptor	accessions screened	Туре	G 1
C1 · 1	Core Subset	1685	Disease	Soybe
Chemical	Arginine	5530	Disease	Soybe
Chemical	Cysteine	5530	Disease	Soybe: syndro
Chemical	human allergen P34	13267	Growth	Height
Chemical	Iodine number	2817	Growth	Stem t
Chemical	Isoleucine	5530	Insect	Beet a
Chemical	Leucine	5530	Insect	Corn e
Chemical	Linoleic	16521	Insect	Leaf h
Chemical	Linolenic	16520	Insect	Mexic
Chemical	Lysine	5530	Insect	Soybe
Chemical	Methionine	7069	Insect	Soybe
Chemical	Oil	16625	Insect	Velvet
Chemical	Oleic	15803	Defoliation	Defoli
Chemical	Other fatty acid composition	5720	Molecular	Maturi
Chemical	Palmitic	15803	Morphology	Branch
Chemical	Petiole ureide	2499	Morphology	Early s
Chemical	Protein	16625	Morphology	Flower
Chemical	Stachyose	5522	Morphology	Hilum
Chemical	Stearic	15803	Morphology	Image
Chemical	Sucrose	5483		
Chemical	Threonine	5530	Morphology	Late sl
Chemical	Tryptophan	5530	Morphology	Lodgi
Chemical	Valine	5530	Morphology	Lower
Disease	Bacterial pustule	3438	Morphology	Mottli
Disease	Bean pod mottle virus	424	Morphology	Other
Disease	Brown stem rot	4027	Morphology	Other
Disease	Frogeye C-32 isolate	1688	Morphology	Other
Disease	Frogeye race 2	2665	Morphology	Pod co
Disease	Frogeye race 11	109	Morphology	Pod le
Disease	Frogeye, unspecified race	115	Morphology	Pubese
Disease	Northern stem canker	1489	Morphology	Pubes
Disease	Peanut mottle virus	2150	Morphology	Pubes
Disease	Phytophthora rot, race 1	9988	Morphology	Seed c
Disease	Phytophthora rot, race 10	629	Morphology	Seed c
Disease	Phytophthora rot, race 12	646	Morphology	Seed q
Disease	Phytophthora rot, race 17	2235	Morphology	Seed s
Disease	Phytophthora rot, race 2	433	Morphology	Seed v
Disease	Phytophthora rot, race 20	659	Morphology	Stem t
Disease	Phytophthora rot, race 25	2844	Morphology	Upper
Disease	Phytophthora rot, race 3	2826	Morphology	Upper
Disease	Phytophthora rot, race 30	115	Nematode	Cyst n
Disease	Phytophthora rot, race 30T	263	Nematode	Cyst n
Disease	Phytophthora rot, race 31	145	Nematode	Cyst n
Disease	Phytophthora rot, race 33	113	Nematode	Cyst n
Disease	Phytophthora rot, race 38	65	Nematode	Cyst n
Disease	Phytophthora rot, race 4	1478	Nematode	Cyst n
Disease	Phytophthora rot, race 5	798	Nematode	Renifo
Disease	Phytophthora rot, race 6	139	Phenology	Flower
Disease	Phytophthora rot, race 7	2980	Phenology	Maturi
Disease	Phytophthora rot, race 8	149	Phenology	Maturi
Disease	Phytophthora rot, race 9	96	Phenology	Twinii
Disease	Pythium ultimum	1290	Production	Yield
Disease	Southern stem canker	120	Root	Root f
Disease	Soybean mosaic virus	236	Stress	Chlore
Disease	Soybean rust, mixed	437	Stress	High t
			Stress	Salt re

<i>Glycine max</i> Type	Descriptor	accessions screened
Disease	Soybean rust, red-brown	103
Disease	Soybean rust, tan	3099
Disease	Soybean sudden death syndrome	6859
Growth	Height	16195
Growth	Stem termination type	1744
Insect	Beet armyworm	4
Insect	Corn ear worm	27
Insect	Leaf hopper injury	784
Insect	Mexican bean beetle damage	5049
Insect	Soybean aphid resistance	3315
Insect	Soybean looper	2335
Insect	Velvetbean caterpillar	133
Defoliation	Defoliation by chewing insects	339
Molecular	Maturity Locus E3	119
Morphology	Branching	215
Morphology	Early shattering score	14779
Morphology	Flower color	1771
Morphology	Hilum color	17744
Morphology	Image	2033
Morphology	Late shattering score	12243
Morphology	Lodging	16040
Morphology	Lower leaflet ration	15
Morphology	Mottling score	13010
Morphology	Other leaf traits	950
Morphology	Other plant traits	257
Morphology	Other seed traits	3462
Morphology	Pod color	17649
Morphology	Pod length	15
Morphology	Pubescence color	1771
Morphology	Pubescence density	17654
Morphology	Pubescence form	17196
Morphology	Seed coat color	17784
Morphology	Seed coat luster	17550
Morphology	Seed quality	16198
Morphology	Seed shape	8159
Morphology	Seed weight	16202
Morphology	Stem termination score	11145
Morphology	Upper leaflet length	15
Morphology	Upper leaflet shape	15
Nematode	Cyst nematode, race 1	490
Nematode	Cyst nematode, race 14	2493
Nematode	Cyst nematode, race 2	21/
Nematode	Cyst nematode, race 3	12097
Nematode	Cyst nematode, race 4	7379
Nematode	Cyst nematode, race 5	1122
Nematode	Reniform nematode	1122
Phenology	Flowering	16204
Phenology	Maturity date	16378
Phenology	Maturity group	17790
Phenology	Twining date	1//)(
Production	Yield	1602
Root	Root fluorescence	790
Stress	Chlorosis score	1974
Stress	High temperature	520
Stress	Salt reaction	564

Glycine soja		
Туре	Type Descriptor	
Chemical	Human allergen P34	1116
Chemical	Linoleic	1075
Chemical	Linolenic	1075
Chemical	Oil	1075
Chemical	Oleic	1075
Chemical	Other fatty acid composition	182
Chemical	Palmitic	1075
Chemical	Protein	1075
Chemical	Stearic	1075
Disease	Bean pod mottle virus	116
Disease	Phytophthora rot, race 3	448
Disease	Soybean mosaic virus	182
Disease	Height	182
Disease	Stem termination type	258
Insect	Beet armyworm	425
Insect	Soybean looper	379
Insect	Velvetbean caterpillar	408
Morphology	Flower color	1004
Morphology	Hilum color	1035
Morphology	Image	1073
Morphology	Leaflet shape	1060
Morphology	Leaflet size	1060
Morphology	Lower leaflet area	1041
Morphology	Lower leaflet aspect	1049

Glycine soja			
Туре	Descriptor	Accessions screened	
Morphology	Lower leaflet ratio	182	
Morphology	Other leaf traits	38	
Morphology	Other plant traits	3	
Morphology	Other seed traits	299	
Morphology	Pod color	1001	
Morphology	Pod length	182	
Morphology	Pubescence color	1003	
Morphology	Pubescence density	1002	
Morphology	Pubescence form	450	
Morphology	Seed coat color	1038	
Morphology	Seed coat luster	569	
Morphology	Seed shape	185	
Morphology	Seed weight	182	
Morphology	Upper leaflet length	182	
Morphology	Upper leaflet shape	182	
Nematode	Cyst nematode, race 1	1078	
Nematode	Cyst nematode, race 3	545	
Nematode	Cyst nematode, race 4	1	
Nematode	Cyst nematode, race 5	547	
Phenology	Flowering	1076	
Phenology	Maturity date	1076	
Phenology	Maturity group	1003	
Phenology	Twining date	182	
Stress	Chlorosis score	19	

Photos stored in GRIN:

	Number of Photos	Number of Accessions
G. max	12,718	3,809
G. soja	2,051	1,081
Perennial Glycine	3,204	991