February 27, 2012 Soybean Germplasm Committee Meeting Minutes

Action items:

All:

• Send an email whenever anything comes up that is relevant to the rest of committee.

Jeff Thompson:

- Ask Steve Muench if he wishes to remain the USB representative on the committee.
- Notify Matthew O'Neal, Henry Nguyen, and Jeff Ray that they were elected as new members.
- Check to see about meeting for a midyear review at the Biennial Molecular/Breeder meeting in Ames, IA the week of Aug. 13, 2012.
- Ask SBW meeting organizers if they could ask people to indicate what their specialty is when they register: Breeder; Entomologist/nematologist; pathologist; or physiologist.
- Write an executive summary
- Send out quarterly updates to the committee.

Jason Bond

- Talk to Alemu Mengistu and Carl Bradley about getting seeds of Frogeye Leaf Spot differentials from Dan Phillips so they can be compared to what is in the Collection and check on the status of the fungal isolates.
- Check with Boyd Pagette and Ray Schneider at LSU to see what work is being done with *Cercospora kukuchii* (seed stain and leaf blight phase).

Esther Peregrine

- Send out minutes in March.
- Post an executive summary of the meeting on the NPGS and Soybase web sites.
- Send a list of accessions with expired PVP's that the National Center for Genetic Resources Preservation (NCGRP) has in their inventory to the soybean breeders' email list.

Randy Nelson

- Offer to give the USB and ISA tours of the Soybean Collection facility.
- Check with Glen Bowers to see if they have ever received any seed from the Collection found to contain transgenes.
- Inform the committee as procedures are developed to incorporate transgenics into the NPGS and establish procedures for seed increase and seed distribution for the soybean collection.

The meeting was called to order by Jeff Thompson. Members in attendance: Jeff Thompson, Rouf Mian, Vince Pantalone, Jason Bond, Istvan Rajcan, Randy Nelson, and Esther Peregrine.

Due to the low attendance, the group discussed everything as a full committee.

Acquisitions

The Korean RDA offered to make some germplasm available to the NPGS. All of their *G. soja* accessions (1670) and 63 Korean soybean varieties have been requested. It is not been determined whether the NPGS can accept the MTA from the RDA or how many accessions may be sent. Rouf Mian mentioned that the RDA was only releasing cultivars that were at least 5 years old.

With the help of Kelly Whiting, USB, possible germplasm exchanges with Kazakhstan and Ukraine are being explored. Material from Kazakhstan would be *G. max*. The Ukraine has a large collection from

Russia and could have *G. soja*. Karen Williams, USDA PEO, is contacting the appropriate representatives from these countries to determine protocols for exchanging germplasm.

Randy is also working on a possible exchange with Japan, mainly with G. soja.

Seed from AVRDC requires an MTA that may not allow their accessions to be entered into the USDA Collection, but individual researchers could get MTA for their own programs.

Work is continuing to try to obtain more Chinese germplasm.

Evaluations

Septoria Brown Spot: S. M. Lim screened the collection about 20 years ago. No resistance was found. Need to locate that data and screen new accessions.

New soybean insects: Kudzu bug, red shouldered stink bug, brown marmorated stink bug. Andy Michael, OSU, has some colonies of the marmorated stink bug. Cage studies on a core collection would be helpful.

Frogeye Leaf Spot: There are problems with virulence of isolates changing, making it harder to manage with fungicides. Dan Phillips claimed his seed source of Peking reacted differently than Urbana's. Jason Bond will check with Alemu Mengistu and Carl Bradley to see if they have Dan's seed and can compare it with the USDA Collection seed.

Charcoal rot: Alemu Mengistu screened germplasm for charcoal rot and his study should be published this year. Chris Little, KSU, is looking at differences in isolates varying in intensity using the scale shown by Alemu on split stems.

Characterization using approximately 50,000 SNP markers of all annual accessions in the collection by Perry Cregan is scheduled to be completed this summer. A single seed was analyzed for each accession.

Cercospora kukuchii (seed stain and leaf blight phase): Seems to be increasing in the south. Jason Bond will check with Boyd Pagette and Ray Schneider, LSU, to see if there are any specific studies on it.

Reniform nematode: Bob Robbins is working on resistance. Sally Setina may have screened lines in MS.

Agronomic evaluations: Evaluations have been started on germplasm added to the collection since 1998 in Stoneville, MS; Urbana, IL; and Rosemount, MN. Photographs are being taken of each accession in the Urbana evaluation. Excess seed from the evaluations will be available after the two-year study is finished for those who would like more than the normal distribution amount of 50 sd/accession. Marcello Oliveira, EMBRAPA, is evaluating the tropical germplasm in Brazil.

Operations

NPGS plans to implement the switch from GRIN to GRIN Global in late 2012 or early 2013. A beta version is available for the public at <u>http://test.grin-global.org/gringlobal</u>. Users are encouraged to try it out and make comments. Esther Peregrine will attend web training sessions for site users in March.

Full Committee

Roy Scott and Mark Bohning were unable to attend, but sent copies of the 2012 Office of National Programs Report and the National Germplasm Resources Laboratory 2012 Report.

Esther Peregrine presented the Soybean Collection Report. That report will be attached to the minutes and excerpts provided in the executive summary.

It was decided that quarterly updates would help keep committee members informed and on track for what they should be doing. Any other pertinent information should be sent as soon as it comes up (i.e., GRIN-Global working, extra evaluation seed available)

Esther Peregrine will send out to the SBW mailing list a list of varieties stored at NCGRP after their PVP expires. If there are multiple requests for a particular variety, it could be considered for addition to the active collection. This allows breeders access to old varieties without over-burdening the active collection.

The minutes will be sent to committee members for approval in March. It was decided to post a summary report of the committee meeting on the NPGS and Soybase web sites instead of the full committee minutes.

Committee member changes:

Matthew O'Neal, Iowa State University, replaced Terry Niblack. Henry Nguyen, University of Missouri, and Jeff Ray, USDA-MS replaced Rouf Mian and Larry Purcell.

Chairs for the subcommittee are: Acquisitions- Randy Nelson, Evaluations- Rusty Smith, Operations – Esther Peregrine.

Respectfully submitted, Esther Peregrine

USDA SOYBEAN GERMPLASM COLLECTION REPORT -- 2011 February 2012

In 2012, we distributed 26,785 seed lots from 15,196 accessions from the USDA Soybean Germplasm Collection in response to 594 requests from 336 individuals. This is the tenth year in a row and 14 of the past 17 years in which we have distributed more seed lots than total accessions in the Collection. We are the only collection in the National Plant Germplasm System (NPGS) with a distribution number to collection size ratio that is over 1. There were 538 domestic requests (91% of the total) with a total of 24,499 seed packets representing 14,768 accessions sent to 292 researchers from 39 states and Puerto Rico. Domestically, public scientists made 388 requests and scientists with commercial companies made 150 requests. There were 2,286 seed packets of 2,076 accessions in 56 orders sent to 44 scientists in 15 countries. Twenty-three requests were made for 607 seed packets of 431 perennial *Glycine* accessions. We also sent backup seeds of 386 accessions to the National Center for Genetic Resources Preservation and 1,186 accessions for storage in the Svalbard Arctic Seed Vault. We have now sent 9,248 accessions to Svalbard. A sample for Svalbard is packaged each time new seeds are added to the Collection so over a period of 10 years all annual accessions will have been sent.

We planted 1,423 accessions of *G. max* for seed replacement in the Collection. These were planted at three locations: 861 accessions at Urbana, 330 accessions at Stoneville, and 232 accessions in Costa Rica. Plots for pure lining new accessions were planted in Urbana, Stoneville, and Costa Rica. One new accession from Brazil and 96 new *Glycine max* pure line accessions from Vietnam were added to the Collection.

We received seeds of 15 domestic cultivars and 4 germplasm releases.

Two-year evaluations of accessions received since 1998 were started in Stoneville, MS (665 accessions, maturity groups V – VIII); Urbana, IL (459 accessions, maturity groups I – IV); and Rosemont, MN (90 accessions, maturity groups 000 - I). For each accession grown at Urbana, pictures of a leaf, leaf surface showing pubescence orientation, pulvinus, mature plants, pods, and seeds were recorded and have been added to GRIN. Many of the plants in Urbana grew poorly due to a summer drought and produced very few seeds, especially maturity group IV accessions from Vietnam, so the trial may have to be repeated an additional year.

In cooperation with Marcelo Oliveira of Embrapa, all of the soybean accessions in maturity groups IX and X will be evaluated in northern Brazil this year.

NPGS plans to implement the switch from GRIN to GRIN Global in late 2012 or early 2013. Training sessions for site users have been scheduled for this spring. The public version of GRIN-Global Release 1.0 is now available at <u>http://test.grin-global.org/gringlobal</u>.

Prakash Arelli screened 280 accessions for resistance to soybean cyst nematode, race 1, and Bibiana Ferrari de Novoa (Don Mario Semillas, Argentina) screened 109 accessions for resistance to frogeye leaf spot, race 11. Glen Hartman screened all 10,139 of the available *Glycine max* accessions not yet tested for resistance to SDS and is summarizing the data. He will screen 1180 *Glycine soja* accessions for SDS resistance this year.

Glen Hartman screened all of the available perennial *Glycine* accessions not yet tested for resistance to *Sclerotina* stem rot (221) and SDS (250) and is in the process of summarizing the data

The South Korean Rural Development Administration has agreed to make available some of the germplasm in their genebank to the NPGS pending approval of an MTA agreeable to both countries. We have

submitted a request for 63 Korean soybean varieties and 1760 *G. soja* accessions based on the information from their web site. With the help of Kelly Whiting from USB, possible germplasm exchanges with Ukraine and Kazakhstan are being explored. We are also talking with scientists at National Agriculture Research Organization Institute of Crop Science in Tsukba, Japan about possible exchanges of wild soybean.

The SNP genotyping of all of the annual accessions in Collection that is being done with Perry Cregan's laboratory is scheduled to be completed this summer. There are 52,041 SNPs on SoySNP50K iSelect SNP beadchip. Validation of the SoySNP50K chip with 96 soybean accessions, 96 U.S. cultivars and 101 wild soybean accessions showed that 47,446 SNPs were polymorphic and 86% had minor allele frequencies $\geq 10\%$. It is likely that more SNPs will be polymorphic when the data set is complete.

The cost of phytosanitary certificates remains a problem for the NPGS. APHIS must support the phytosanitary certificate operation with user fees and those fees have risen from \$23 in 2008 to \$61 in 2012. These costs have now outstripped the available funds from the Plant Exchange Office (PEO). Last fiscal year sites that use this service, such as our Collection, contributed funds to offset the cost to the PEO. This fiscal year the PEO is getting some certificates from the Maryland Department of Agriculture at a much reduced cost compared to APHIS. This has already saved the System nearly \$8,500. ARS is continuing to work with APHIS to try to reach a sustainable solution for both agencies.

Esther Peregrine and Randall Nelson USDA Soybean Germplasm Collection 1101 W. Peabody Drive, Urbana, Illinois 61801 As of December 31, 2010, the Collection contained the following entries:

USDA Soybean Germplasm Collection Inventory

Annual subcollection	Entries	Perennial species	Entries
Introduced G. max	17135	G. arenaria	5
G. soja	1180	G. argyrea	14
Germplasm releases	188	G. canescens	123
Modern cultivars	538	G. clandestina	90
Old cultivars	208	G. curvata	9
Private cultivars	75	G. cyrtoloba	48
All isolines	599	G. dolichocarpa	3
Color	47	G. falcata	29
Genetic types	197	G. latifolia	44
Annual subtotal	20167	G. latrobeana	7
		G. microphylla	32
		G. peratosa	7
		G. pescadrensis	68
		G. pindanica	4
		G. rubiginosa	38
		G. stenophita	27
		G. syndetika	5
		G. tabacina	143
		G. tomentella	310
		Perennial subtotal	1006

Collection total 21173

Number of accessions screened for which data is entered in GRIN:

Perennial Glycine			
Туре	Descriptor	Accessions screened	
	Core subset	116	
	Image	958	
CHEMICAL	Bowman-Birk Inhibitor	553	
CYTOLOGIC	Chromosome number	766	
DISEASE	Sclerotinia stem rot	777	
DISEASE	Sudden death syndrome	758	
MORPHOLOGY	Adventitious roots	330	
MORPHOLOGY	Leaflet arrangement	299	
MORPHOLOGY	Upper pubescence type	299	
MORPHOLOGY	Upper terminal leaflet length	271	
MORPHOLOGY	Upper terminal leaflet shape	299	
MORPHOLOGY	Upper terminal leaflet width	299	
NEMATODE	Soybean cyst nematode, race 3	493	

Glycine max Gl			Glycine max
Туре	Descriptor	accessions screened	Туре
	Core Subset	1685	Disease
Chemical	Arginine	5530	Disease
Chemical	Cysteine	5530	Disease
Chemical	human allergen P34	13267	Disease
Chemical	Iodine number	2817	
Chemical	Isoleucine	5530	Growth
Chemical	Leucine	5530	Growth
Chemical	Linoleic	16521	Insect
Chemical	Linolenic	16520	Insect
Chemical	Lysine	5530	Insect
Chemical	Methionine	7069	Insect
Chemical	Oil	16625	Insect
Chemical	Oleic	15803	Insect
Chemical	Other fatty acid composition	5720	Insect
Chemical	Palmitic	15803	Morphology
Chemical	Petiole ureide	2499	Morphology
Chemical	Protein	16625	Morphology
Chemical	Stachyose	5522	Morphology
Chemical	Stearic	15803	Morphology
Chemical	Sucrose	5483	Morphology
Chemical	Threonine	5530	Morphology
Chemical	Tryptophan	5530	Morphology
Chemical	Valine	5530	Morphology
Disease	Bacterial pustule	3438	Morphology
Disease	Bean pod mottle virus	424	Morphology
Disease	Brown stem rot	4027	Morphology
Disease	Frogeve C-32 isolate	1688	Morphology
Disease	Frogeve race 2	2665	Morphology
Disease	Frogeve race 11	109	Morphology
Disease	Frogeve, unspecified race	115	Morphology
Disease	Northern stem canker	1489	Morphology
Disease	Peanut mottle virus	2150	Morphology
Disease	Phytophthora rot, race 1	9988	Morphology
Disease	Phytophthora rot, race 10	629	Morphology
Disease	Phytophthora rot, race 12	646	Morphology
Disease	Phytophthora rot, race 17	2235	Morphology
Disease	Phytophthora rot, race 2	433	Morphology
Disease	Phytophthora rot, race 20	659	Morphology
Disease	Phytophthora rot, race 25	2844	Morphology
Disease	Phytophthora rot, race 3	2826	Nematode
Disease	Phytophthora rot, race 30	115	Nematode
Disease	Phytophthora rot, race 30T	263	Nematode
Disease	Phytophthora rot, race 31	145	Nematode
Disease	Phytophthora rot, race 33	113	Nematode
Disease	Phytophthora rot, race 38	65	Nematode
Disease	Phytophthora rot, race 4	1478	Phenology
Disease	Phytophthora rot, race 5	798	Phenology
Disease	Phytophthora rot, race 6	139	Phenology
Disease	Phytophthora rot, race 7	2980	Phenology
Disease	Phytophthora rot_race 8	149	Production
Disease	Phytophthora rot, race 9	96	Root
Disease	Pythium ultimum	1290	Stress
Disease	Southern stem canker	1200	Stress
Disease	Sovhean mosaic virus	120	Stress
Discuse	Soyocan mosaic vitus	15	L

Glycine max			
Туре	Descriptor	accessions screened	
Disease	Soybean rust, mixed	437	
Disease	Soybean rust, red-brown	103	
Disease	Soybean rust, tan	3099	
Disease	Soybean sudden death	6859	
	syndrome		
Growth	Height	16195	
Growth	Stem termination type	17441	
Insect	Beet armyworm	5	
Insect	Corn ear worm	27	
Insect	Leaf hopper injury	784	
Insect	Mexican bean beetle damage	5049	
Insect	Soybean aphid resistance	2600	
Insect	Soybean looper	2335	
Insect	Velvetbean caterpillar	133	
Morphology	Branching	2151	
Morphology	Early shattering score	14779	
Morphology	Flower color	17570	
Morphology	Hilum color	17588	
Morphology	Image	2033	
Morphology	Late shattering score	12243	
Morphology	Lodging	16040	
Morphology	Lower leaflet ration	15	
Morphology	Mottling score	13016	
Morphology	Other leaf traits	969	
Morphology	Other plant traits	257	
Morphology	Other seed traits	3473	
Morphology	Pod color	17559	
Morphology	Pod length	15	
Morphology	Pubescence color	17711	
Morphology	Pubescence density	17654	
Morphology	Pubescence form	17196	
Morphology	Seed coat color	17746	
Morphology	Seed coat luster	17410	
Morphology	Seed quality	16198	
Morphology	Seed shape of Glycine max	8159	
Morphology	Seed weight	16202	
Morphology	Stem termination score	11145	
Morphology	Upper leaflet length	15	
Morphology	Upper leaflet shape	15	
Nematode	Cyst nematode, race 1	496	
Nematode	Cyst nematode, race 14	2493	
Nematode	Cyst nematode, race 2	214	
Nematode	Cyst nematode, race 3	12097	
Nematode	Cyst nematode, race 4	7379	
Nematode	Cyst nematode, race 5	11227	
Phenology	Flowering	16204	
Phenology	Maturity date	16378	
Phenology	Maturity group	17760	
Phenology	Twining date	14	
Production	Yield	16021	
Root	Root fluorescence	796	
Stress	Chlorosis score	1974	
Stress	High temperature	520	
Stress	Salt reaction	564	
~~~~	Sur louonon	504	

Glycine soja			
Туре	Type Descriptor		
Chemical	Human allergen P34	1116	
Chemical	Linoleic	1075	
Chemical	Linolenic	1075	
Chemical	Oil	1075	
Chemical	Oleic	1075	
Chemical	Other fatty acid composition	182	
Chemical	Palmitic	1075	
Chemical	Protein	1075	
Chemical	Stearic	1075	
Disease	Bean pod mottle virus	116	
Disease	Phytophthora rot, race 3	448	
Disease	Soybean mosaic virus	182	
Disease	Height	182	
Disease	Stem termination type	258	
Insect	Beet armyworm	425	
Insect	Soybean looper	379	
Insect	Velvetbean caterpillar	408	
Morphology	Flower color	1008	
Morphology	Hilum color	1037	
Morphology	Image	1073	
Morphology	Leaflet shape	1060	
Morphology	Leaflet size	1060	
Morphology	Lower leaflet area	1041	
Morphology	Lower leaflet aspect	1049	

Glycine soja			
Туре	Descriptor	Accessions screened	
Morphology	Lower leaflet ratio	182	
Morphology	Other leaf traits	38	
Morphology	Other plant traits	3	
Morphology	Other seed traits	300	
Morphology	Pod color	1005	
Morphology	Pod length	182	
Morphology	Pubescence color	1003	
Morphology	Pubescence density	1002	
Morphology	Pubescence form	450	
Morphology	Seed coat color	1041	
Morphology	Seed coat luster	572	
Morphology	Seed shape	185	
Morphology	Seed weight	182	
Morphology	Upper leaflet length	182	
Morphology	Upper leaflet shape	182	
Nematode	Cyst nematode, race 1	1078	
Nematode	Cyst nematode, race 3	545	
Nematode	Cyst nematode, race 4	1	
Nematode	Cyst nematode, race 5	547	
Phenology	Flowering	1076	
Phenology	Maturity date	1076	
Phenology	Maturity group	1007	
Phenology	Twining date	182	
Stress	Chlorosis score	19	

#### Photos stored in GRIN:

	Number of Photos	Number of Accessions
G. max	7,190	3,023
G. soja	2,051	1,081
Perennial Glycine	3,106	969